IJRAR.ORG

E-ISSN: 2348-1269, P-ISSN: 2349-5138

INTERNATIONAL JOURNAL OF RESEARCH AND ANALYTICAL REVIEWS (IJRAR) | IJRAR.ORG

An International Open Access, Peer-reviewed, Refereed Journal

INSILICO T-CELL EPITOPE BASED VACCINE DESIGN AGAINST HEPATITIS VIRUS

¹Deepala. Vasantha Vidya Lakshmi,

¹Lecturer

¹Department of Biotechnology, ¹Sai Sudhir Degree & PG College, ECIL x roads, Hyderabad,India

Abstract : Hepatitis is a serious health risk now-a-days and needs advancement in its treatment against increasing problems of the drug efficacy and the existence of the resistant virus. Hepatitis refers to the inflammation of the liver. It is commonly caused by a virus. Viral infections of the liver include Hepatitis A, B, C, D, E. A different type of virus is responsible for causing various types of Hepatitis disease. Various vaccines are available for treating the Hepatitis. In the present study, the problems of designing an efficient drug were solved using various computer aided tools. With the help of tools like NetCTL and IEDB(Immune Epitope Database and Analysis Resource), various epitopes have been identified, that can be used as ligands for the construction of a drug. Three-dimensional modelling of the selected epitope sequences was done using PEPFOLD and PHYRE softwares.

I. Introduction

Hepatitis refers to an inflammatory condition of the liver. It's commonly caused by a viral infection, but there are other possible causes of hepatitis. These include autoimmune hepatitis and hepatitis that occurs as a secondary result of medications, drugs, toxins, and alcohol. Autoimmune hepatitis is a disease that occurs when your body makes antibodies against your liver tissue.

Your liver is located in the right upper area of your abdomen. It performs many critical functions that affect metabolism throughout your body, including:

- bile production, which is essential to digestion
- filtering of toxins from your body
- excretion of bilirubin (a product of broken-down red blood cells), cholesterol, hormones, and drugs
- breakdown of carbohydrates, fats, and proteins
- activation of enzymes, which are specialized proteins essential to body functions
- storage of glycogen (a form of sugar), minerals, and vitamins (A, D, E, and K)
- synthesis of blood proteins, such as albumin
- synthesis of clotting factors

According to the Centers for Disease Control and Prevention (CDC)Trusted Source, approximately 4.4 million Americans are currently living withchronic hepatitis B and C. Many more people don't even know that they have hepatitis. Treatment options vary depending on which type of hepatitis you have. You can prevent some forms of hepatitis through immunizations and lifestyle precautions.

Types of viral hepatitis

Viral infections of the liver that are classified as hepatitis include hepatitis A, B, C, D, and E. A different virus is responsible for each type of virally transmitted hepatitis.

Hepatitis A is always an acute, short-term disease, while hepatitis B, C, and D are most likely to become ongoing and chronic. Hepatitis E is usually acute but can be particularly dangerous in pregnant women.

Hepatitis A

HepatitisA or infectious jaundice is caused by hepatitis A virus (HAV) {Ryan KJ,et.al(2004), Medical Sherris Microbiology ed.).}, a picornavirus transmitted by the fecal-oral route often associated with ingestion of (4th contaminated food. It causes an acute form of hepatitis and does not chronic The patient's have а stage. immune system makes antibodies against HAV that confer immunity against future infection. People with hepatitis A are advised to rest, stay hydrated and avoid alcohol. A vaccine is available that will prevent HAV infection for up to 10 years. Hepatitis A can be spread through personal contact, consumption of raw sea food, or drinking contaminated water. This occurs primarily in third world countries. Strict personal hygiene and the avoidance of raw and unpeeled foods can help prevent an infection. Infected people excrete HAV with their feces two weeks before and one week after the appearance of jaundice. The time between the infection and the start of the illness averages 28 days (ranging from 15 to 50 days), and most recover fully within

2 months, although approximately 15% of sufferers may experience continuous or relapsing symptoms from six months to a year following initial diagnosis.

Hepatitis A

Marker	Detection Time	Description	Significance
Faecal HAV	2–4 weeks or 28 days	_	Early detection
Ig M anti HAV	4–12 weeks	Enzyme immunoassay for antibodies	During acute Illness
Ig G anti HAV	5 weeks– persistent	Enzyme immunoassay for antibodies	Old infection or reinfection

Table 1: Existing Markers for detection of Viral Hepatitis

Hepatitis **B**

Hepatitis B (HB) is an infectious disease caused the hepatitis В virus by (HBV) that affects the liver. [Logan, et. al (1987), Logan's Medical and Scientific Abbreviations. J.B.Lippincott and Company, p.232.]. HBV, a heap DNA virus that can cause both acute and chronic hepatitis. Chronichepatitis develops in the 15% of adults who are unable to eliminate the virus after an initial infection. Identified methods of transmission include contact with blood, blood transfusion (nowrare), unsanitary tattoos, sex (throu gh sexual intercourse or contact with bodily fluids), or mother-to-child by breast feeding; there is minimal evidence of transplacental crossing. However, in about half of cases the source of infection cannot be determined. Blood contact can occur by sharing syringes in intravenous drug use, shaving accessories such as razor blades, or touching wounds on infected persons. Needle-exchange programmes have been created in many countries as a form of prevention.

Patients with chronic hepatitis B have antibodies against the virus, but not enough to clear the infected liver cells. The continued production of virus and countervailing antibodies is a likely cause of the immune complex disease seen in these patients. A vaccine is available to prevent infection for life. Hepatitis B infections result in 500,000 to 1,200,000 deaths per year worldwide due to the complications of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Hepatitis B is endemic in a number of (mainly South-East Asian) countries, making cirrhosis and hepatocellular carcinoma big killers. There are eight treatment options approved by the U.S. Food and Drug Administration (FDA) available for persons with a chronichepatitisBinfection: alpha-interferon, pegylated

interferon, adefovir, entecavir, telbivudine, lamivudine, tenofovir

disoproxil and tenofovir alafenamide with a 65% rate of sustained response. Hepatitis C

Hepatitis C is an infectious disease caused by the hepatitis C virus (HCV) that primarily affects the liver.[Ryan KJ, Ray CG, eds. (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill. pp. 551–2.]. Hepatitis C (originally "non- A non-B hepatitis") is caused by hepatitis C virus (HCV), an RNA virus of the family Flaviviridae. HCV can be transmitted through contact with blood including through sexual contact if the two parties' blood is mixed) and can also cross the placenta. Hepatitis C usually leads to chronic hepatitis, culminating in cirrhosis in some people. It usually remains asymptomatic for decades. Patients with hepatitis C are susceptible to severe hepatitis if they contract either hepatitis A or B, so all persons with hepatitis C should be immunized against hepatitis A and hepatitis B if they are not already immune, and avoid alcohol. HCV viral levels can be reduced to undetectable levels by a combination of interferon and the antiviral drug ribavirin. The genotype of the virus is the primary determinant of the rate of response to this treatment regimen, with genotype 1 being the most resistant.

Hepatitis C is the most common chronic blood-borne infection in the United States.

Hepatitis D

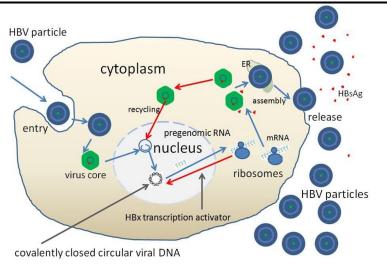
Hepatitis D (hepatitis delta) is a disease caused by the hepatitis delta virus (*HDV*), a small spherical enveloped virusoid[Magnius,L; T, et.al, "ICTV Virus Taxonomy Profile: Deltavirus". The Journal of General Virology. 99 (12): 1565–1566]. The *Hepatitis D virus* (HDV) or hepatitis delta agent belongs to the genus Deltavirus and causes Type D Hepatitis. It is similar to a viroid as it can only propagate in the presence of the hepatitis B virus, depending on the helper function of HBV for its replication and expression. It has no independent life cycle, but can survive and replicate as long as HBV infection persists in the host body. It can only cause infection when encapsulated by hepatitis B virus surface antigens.

© 2022 IJRAR July 2022, Volume 9, Issue 3

Hepatitis E

Hepatitis E is inflammation of the liver caused by infection with the hepatitis E virus (HEV)[Kamar, et.al (2014), Clinical Microbiology Reviews. 27 (1): 116–138.].The *Hepatitis E virus* (HEV), from the family Hepeviridae, produces symptoms similar to hepatitis A, although it can take a fulminant course in some patients, particularly pregnant women (mortality rate about 20%); chronic infections may occur in immune-compromised patients. It is more prevalent in the Indian subcontinent. The virus is feco- orally transmitted and usually is self-limited.

Type of Hepatitis	Gene ID	Protein ID
A	MK829707	QCO31664.1
В	MK075117	QCS40651.1
С	MK527509	QCG74145.1
D	MH844625	QCC89118.1
Е	LC436450	BBH51390.1


Table 2: Gene ID and Protein ID of Hepatitis Virus

Life Cycle

The life cycle of *Hepatitis B virus* is complex. Hepatitis B is one of a few known non-retroviral viruses which use reverse transcription as a part of its replication process.

Attachment

The virus gains entry into the cell by binding to receptors on the surface of the cell and entering it by endocytosis mediated by either clathrin or caveolin-1.[Zhang Z, et.al (July 2016), "Visualization of hepatitis B virus entry - novel tools and approaches to directly follow virus entry into hepatocytes".]. HBV initially binds to heparin sulfate proteoglycan. The pre-S1 segment of the HBV L protein then binds tightly to the cell surface receptor sodium taurocolatecotransporting polypeptide (NTCP), encoded by the SLC10A1gene [Yan H,et.al(September 2015) Antiviral Research. 121: 24–30.]. NTCP is mostly found in the sinusoidal membrane of liver cells. The presence of NTCP in liver cells correlates with the tissue specificity of HBV infection.

Figure 1: Life Cycle of Hepatitis Virus

Penetration

Following endocytosis, the virus membrane fuses with the host cell's membrane, releasing the nucleocapsid into the cytoplasm. [Watashi K, Wakita T (August 2015), Cold Spring Harbor Perspectives in Medicine. 5].

Uncoating

Because the virus multiplies via RNA made by a host enzyme, the viral genomic DNA has to be transferred to the cell nucleus. It is thought the capsid is transported on the microtubules to the nuclear pore. The core proteins dissociate from the partially double stranded viral DNA, which is then made fully double stranded (by host DNA polymerases) and transformed into covalently closed circular DNA (cccDNA) that serves as a template for transcription of four viral mRNAs.

Replication

The largest mRNA, (which is longer than the viral genome), is used to make the new copies of the genome and to make the capsid core protein and the viral RNA-dependent-DNA-polymerase.

Assembly

These four viral transcripts undergo additional processing and go on to form progeny virions which are released from the cell or returned to the nucleus and re-cycled to produce even more copies. [Beck J, Nassal M (January 2007), World Journal of Gastroenterology. 13 (1): 48–64, Bruss V

(January 2007).]

Release

The long mRNA is then transported back to the cytoplasm where the virion P protein synthesizes DNA via its reverse transcriptase activity.

Symptoms and Complications

If you have infectious forms of hepatitis that are chronic, like hepatitis B and C, you may not have symptoms in the beginning. Symptoms may not occur until the damage affects liver function.

Signs and symptoms of acute hepatitis appear quickly. They include:

- fatigue
- flu-like symptoms
- dark urine
- pale stool
- abdominal pain
- loss of appetite
- unexplained weight loss
- yellow skin and eyes, which may be signs of jaundice

Chronic hepatitis develops slowly, so these signs and symptoms may betoo subtle to notice.

Treatment

Treatment options are determined by which type of hepatitis you have and whether the infection is acute or chronic.

Hepatitis A

Hepatitis A usually doesn't require treatment because it's a short-term illness. Bed rest may be recommended if symptoms cause a great deal of discomfort. If you experience vomiting or diarrhea, follow your doctor's orders for hydration and nutrition.

The hepatitis A vaccine is available to prevent this infection. Most children begin vaccination between ages 12 and 18 months. It's a series of two vaccines. Vaccination for hepatitis A is also available for adults and can be combined with the hepatitis B vaccine.

Hepatitis B

Acute hepatitis B infection does not usually require treatment and most adults clear the infection spontaneously. [Hollinger FB, Lau DT (December 2006).]

Chronic hepatitis B is treated with antiviral medications. [Lai CL, Yuen MF (July 2007)]. This form of treatment can be costly because it must be continued for several months or years. Treatment for chronic hepatitis B also requires regular medical evaluations and monitoring to determine if the virus is responding to treatment.

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

Hepatitis B can be prevented with vaccination. The CDC Trusted Source recommends hepatitis B vaccinations for all newborns. The series of three vaccines is typically completed over the first six months of childhood. The vaccine is also recommended for all healthcare and medical personnel.

Hepatitis C

Antiviral medications are used to treat both acute and chronic forms of hepatitis C. People who develop chronic hepatitis C are typically treated with a combination of antiviral drug therapies. Those with chronic hepatitis C are advised to avoid alcohol and medications toxic to the liver. [Wilkins, et.al (2006)]. They may also need further testing to determine the best form of treatment.

People who develop cirrhosis (scarring of the liver) or liver disease as a result of chronic hepatitis C may be candidates for a liver transplant.

Currently, there is no vaccination for hepatitis C.

Hepatitis D

No antiviral medications exist for the treatment of hepatitis D at this time. According to a 2013 studyTrusted Source, a drug called alpha interferon can be used to treat hepatitis D, but it only shows improvement in about 25 to 30 percent of people. [Yurdaydin C, Idilman R (August 2015)].

Hepatitis D can be prevented by getting the vaccination for hepatitis B, as infection with hepatitis B is necessary for hepatitis D to develop.

Hepatitis E

Currently, no specific medical therapies are available to treat hepatitis E. Because the infection is often acute, it typically resolves on its own. People with this type of infection are often advised to get adequate rest, drink plenty of fluids, get enough nutrients, and avoid alcohol. However, pregnant women who develop this infection require close monitoring and care.

Reviews of existing small studies suggest that ribavirin can be considered effective in immunocompromised people who have developed chronic infection.[Dalton, Harry R.; Kamar, Nassim (2016)].

2. Vaccines - Introduction

A vaccine is a biological preparation that provides active acquired immunity to a particular disease. A vaccine typically contains an agent that resembles a disease-causing microorganism and is often made from weakened or killed forms of the microbe, its toxins, or one of its surface proteins. The agent stimulates the body's immune system to recognize the agent as a threat, destroy it, and to further recognize and destroy any of the microorganisms associated with that agent that it may encounter in the future. Vaccines can be prophylactic (example: to prevent or ameliorate the effects of a future infection by a natural or "wild" pathogen), or therapeutic (e.g., vaccines against cancer are being investigated) [Melief CJ, et.al (September 2015)].

The administration of vaccines is called vaccination. Vaccination is the most effective method of preventing infectious diseases widespread immunity due to vaccination is largely responsible for the world wide eradication of smallpox and

the restriction of diseases such as polio, measles and tetanus from much of the world. The effectiveness of vaccination has been widely studied and verified; for example, vaccines that have proven effective include the influenza vaccine the HPV vaccine [Chang Y, et.al (July 2009)] and chicken pox vaccine [Liesegang TJ (August 2009)].

The terms *vaccine* and *vaccination* are from *Variolaevaccinae* (smallpox of the cow), the term devised by Edward Jenner to denote cowpox. He used it in 1798 in the long title of his *Inquiry into the Variolaevaccinae known as the Cow Pox*, in which he described the protective effect of cowpox against smallpox [Baxby D (January 1999)]. In 1881, to honor Jenner, Louis

Pasteur proposed that the terms should be extended to cover the new protective inoculations then being developed.

History

Prior to the introduction of vaccination with material from cases of cowpox (heterotypic immunization), smallpox could be prevented by deliberate inoculation of smallpox virus, later referred to as variolation to distinguish it from smallpox vaccination [Needham, Joseph. (2000)]. The earliest hints of the practice of inoculation for smallpox in China come during the 10th century. The Chinese also practiced the oldest documented use of variolation, dating back to the fifteenth century. They implemented a method of "nasal insufflation" administered by blowing powdered smallpox material, usually scabs, up the nostrils. Various insufflation techniques have been recorded throughout the sixteenth and seventeenth centuries within China. Two reports on the Chinese practice of inoculation were received by the Royal Society in London in 1700; one by Dr. Martin Lister who received a report by an employee of the East India Company stationed in China and another by Clopton Havers.

Sometime during the late 1760s whilst serving his apprenticeship as a surgeon/apothecary **Edward Jenner** learned of the story, common in rural areas, that dairy workers would never have the often-fatal or disfiguring disease smallpox, because they had already had cowpox, which has a very mild effect in humans. In 1796, Jenner took pus from the hand of a milkmaid with cowpox, scratched it into the arm of an 8-year-old boy, James Phipps, and six weeks later inoculated (variolated) the boy with smallpox, afterwards observing that he did not catch smallpox. Jenner extended his studies and in1798 reported that his vaccine was safe in children and adults and could be transferred from arm-to-arm reducing reliance on uncertain supplies from infected cows [Needham, Joseph. (2000)] Since vaccination with cowpox was much safer than smallpox inoculation, the latter, though still widely practised in England, was banned in 1840.

The second generation of vaccines was introduced in the 1880s by Louis Pasteur who developed vaccines for chicken cholera and anthrax [PasteurL (1881)], and from the late nineteenth century vaccines were considered a matter of national prestige, and compulsory vaccination laws were passed.

The twentieth century saw the introduction of several successful vaccines, including those against diphtheria, measles, mumps, and rubella. Major achievements included the development of the polio vaccine in the 1950s and the eradication of smallpox during the 1960s and 1970s. Maurice Hilleman was the most prolific of the developers of the vaccines in the twentieth century. As vaccines became more common, many people began taking them for granted. However, vaccines remain elusive for many important diseases, including herpes simplex, malaria, gonorrhea, and HIV[Stern AM, Markel H (2005)].

Types of Vaccines

Vaccines are dead or inactivated organisms or purified products derived from them. There are several types of vaccines in use. These represent different strategies used to try to reduce the risk of illness while retaining the ability to induce a beneficial immune response.

Inactivated

© 2022 IJRAR July 2022, Volume 9, Issue 3

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

Some vaccines contain inactivated, but previously virulent, micro-organisms that have been destroyed with chemicals, heat, or radiation.Examples include the polio vaccine, hepatitis A vaccine, rabies vaccine and some influenza vaccines.

Attenuated

Some vaccines contain live, attenuated microorganisms. Many of these are active viruses that have been cultivated under conditions that disable their virulent properties, or that use closely related but less dangerous organisms to produce a broad immune response. Although most attenuated vaccines are viral, some are bacterial in nature. Examples include the viral diseases yellow fever, measles, mumps, and rubella, and the bacterial disease typhoid. The live *Mycobacterium tuberculosis* vaccine developed by Calmette and Guérin is not made of a contagious strain but contains a virulently modified strain called "BCG" used to elicit an immune response to the vaccine. The live attenuated vaccine containing strain *Yersinia pestis* EV is used for plague immunization. Attenuated vaccines have some advantages and disadvantages. They typically provoke more durable immunological responses and are the preferred type for healthy adults. But they may not be safe for use in immunocompromised individuals, and on rare occasions mutate to a virulent form and cause disease[Sinha JK, Bhattacharya S]

Toxoid

Toxoid vaccines are made from inactivated toxic compounds that cause illness rather than the micro-organism. Examples of toxoid-based vaccines include tetanus and diphtheria. Toxoid vaccines are known for their efficacy. Not all toxoids are for micro-organisms; for example, *Crotalusatrox* toxoid is used to vaccinate dogs against rattlesnake bites.

Subunit

Protein subunit – rather than introducing an inactivated or attenuated micro- organism to an immune system (which would constitute a "whole-agent" vaccine), a fragment of it can create an immune response. Examples include the subunit vaccine against Hepatitis B virus that is composed of only the surface proteins of the virus (previously extracted from the blood serum of chronically infected patients, but now produced by recombination of the viral genes into yeast) or as an edible algae vaccine, the virus-like particle (VLP) vaccine against human papillomavirus (HPV) that is composed of the viral major capsid protein, and the hemagglutinin and neuraminidase subunits of the influenza virus. Subunit vaccine is being used for plague immunization.

Conjugate

Conjugate – certain bacteria have polysaccharide outer coats that are poorly immunogenic. By linking these outer coats to proteins (e.g., toxins), the immune system can be led to recognize the polysaccharide as if it were a protein antigen. This approach is used in the *Haemophilus influenzae* type B vaccine.

Experimental

A number of innovative vaccines are also in development and in use:

- Dendritic cell vaccines combine dendritic cells with antigens in order to present the antigens to the body's white blood cells, thus stimulating an immune reaction. These vaccines have shown some positive preliminary results for treating brain tumors [Kim W, Liau LM (January 2010)] and are also tested in malignant melanoma.
- Recombinant vector by combining the physiology of one micro- organism and the DNA of another, immunity can be created against diseases that have complex infection processes. An example is the RVSV-ZEBOV vaccine licensed to Merck that is being used in 2018 to combat ebola in Congo [McKenzie, David (26 May 2018)].

© 2022 IJRAR July 2022, Volume 9, Issue 3

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

- DNA vaccination an alternative, experimental approach to vaccination called *DNA vaccination*, created from an infectious agent's DNA, is under development. The proposed mechanism is the insertion (and expression, enhanced by the use of electroporation, triggering immune system recognition) of viral or bacterial DNA into human or animal cells. Some cells of the immune system that recognize the proteins expressed will mount an attack against these proteins and cells expressing them. Because these cells live for a very long time, if the pathogen that normally expresses these proteins is encountered at a later time, they will be attacked instantly by the immune system. One potential advantage of DNA vaccines is that they are very easy to produce and store. As of 2015, DNA vaccination is still experimental and is not approved for human use.
- T-cell receptor peptide vaccines are under development for several diseases using models of Valley Fever, stomatitis, and atopic dermatitis. These peptides have been shown to modulate cytokine production and improve cell-mediated immunity.
- Targeting of identified bacterial proteins that are involved in complement inhibition would neutralize the key bacterial virulence mechanism [Meri S, Jördens M, (December 2008)].

While most vaccines are created using inactivated or attenuated compounds from micro-organisms, synthetic vaccines are composed mainly or wholly of synthetic peptides, carbohydrates, or antigens.

Effectiveness

There is overwhelming scientific consensus that vaccines are a very safe and effective way to fight and eradicate infectious diseases [Orenstein WA, et.al (1985). "Field evaluation of vaccine efficacy"]. Limitations to their effectiveness, nevertheless, exist. Sometimes, protection fails because the host's immune system simply does not respond adequately or at all. Lack of response commonly results from clinical factors such as diabetes, steroid use, HIV infection, or age. It also might fail for genetic reasons if the host's immune system includes no strains of B cells that can generate antibodies suited to reacting effectively and binding to the antigens associated with the pathogen.

Even if the host does develop antibodies, protection might not be adequate; immunity might develop too slowly to be effective in time, the antibodies might not disable the pathogen completely, or there might be multiple strains of the pathogen, not all of which are equally susceptible to the immune reaction. However, even a partial, late, or weak immunity, such as a one resulting from cross-immunity to a strain other than the target strain, may mitigate an infection, resulting in a lower mortality rate, lower morbidity, and faster recovery.

Adjuvants commonly are used to boost immune response, particularly for older people (50–75 years and up), whose immune response to a simple vaccine may have weakened.

The efficacy or performance of the vaccine is dependent on a number of factors:

- the disease itself (for some diseases vaccination performs better than for others)
- the strain of vaccine (some vaccines are specific to, or at least most effective against, particular strains of the disease)
- whether the vaccination schedule has been properly observed.
- idiosyncratic response to vaccination; some individuals are "non- responders" to certain vaccines, meaning that they do not generate antibodies even after being vaccinated correctly.
- assorted factors such as ethnicity, age, or genetic predisposition.

If a vaccinated individual does develop the disease vaccinated against (breakthrough infection), the disease is likely to be less virulent than in unvaccinated victims.

The following are important considerations in the effectiveness of a vaccination program:

- 1. careful modeling to anticipate the effect that an immunization campaign will have on the epidemiology of the disease in the medium to long term
- 2. ongoing surveillance for the relevant disease following introduction of a new vaccine
- **3.** maintenance of high immunization rates, even when a disease has become rare.

In 1958, there were 763,094 cases of measles in the United States; 552 deaths resulted. After the introduction of new vaccines, the number of cases dropped to fewer than 150 per year (median of 56). In early 2008, there were

64 suspected cases of measles. Fifty-four of those infections were associated with importation from another country, although only 13% were actually acquired outside the United States; 63 of the 64 individuals either had never been vaccinated against measles or were uncertain whether they had been vaccinated.

Vaccines led to the eradication of smallpox, one of the most contagious and deadly diseases in humans. Other diseases such as rubella, polio, measles, mumps, chickenpox, and typhoid are nowhere near as common as they were a hundred years ago thanks to widespread vaccination programs. As long as the vast majority of people are vaccinated, it is much more difficult for an outbreak of disease to occur, let alone spread. This effect is called herd immunity. Polio, which is transmitted only between humans, is targeted by an extensive eradication campaign that has seen endemic polio restricted to only parts of three countries (Afghanistan, Nigeria, and Pakistan). However, the difficulty of reaching all children as well as cultural misunderstandings have caused the anticipated eradication date to be missed several times. Vaccines also help prevent the development of antibiotic resistance. For example, by greatly reducing the incidence of pneumonia caused by *Streptococcus pneumoniae*, vaccine programs have greatly reduced the prevalence of infections resistant to penicillin or other first-line antibiotics.

Adverse effects

Vaccination given during childhood is generally safe. Adverse effects, if any, are generally mild. The rate of side effects depends on the vaccine in question. Some common side effects include fever, pain around the injection site, and muscle aches. Additionally, some individuals may be allergic to ingredients in the vaccine.MMR vaccine is rarely associated with febrile seizures [Maglione MA, et.al (August 2014)].

Severe side effects are extremely rare. Varicella vaccine is rarely associated with complications in immunodeficient individuals and rotavirus vaccines are moderately associated with intussusception.

Some countries such as the United Kingdom provide compensation for victims of severe adverse effects via its Vaccine Damage Payment. The United States has the National Childhood Vaccine Injury Act. At least 19 countries have such no-fault compensation.

3. In silico Vaccine Design

Infectious diseases caused by bacteria, viruses, fungi, and parasites cause millions of deaths worldwide every year. The efficacy of all known current anti-infective agents is affected by the drug resistant form of the pathogens. Therefore, the development of anti-infective drugs that target drug-resistant pathogens is very urgent. *In silico* models help to understand infectious diseases and develop novel therapeutics to treat them.

With the advent of computer-aided informatics and high-throughput technologies, vaccine research has entered a new era. Rational vaccine prediction is more reasonable than years ago because of the two progressive areas, vaccine database and *in silico* vaccine design models.

© 2022 IJRAR July 2022, Volume 9, Issue 3

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

In silico models and databases play different but complementary roles in vaccine design. The database collects information about experimentally verified vaccine and vaccine components and *in silico* models use computational methods to predict and design new vaccine and the components.

In the development of small molecules, *in silico* model is important in genome-wide analysis, comparative genomics, pathway analysis, virtual screening and target identification. For vaccine development, *in silico* model can accelerate the computer identification algorithm of the relevant protein candidates with improved expression immunogens.

Advanced DNA sequencing and cellular, molecular and immunological methods provide a large number of vaccine-related data, which has led to an increase in the amount of data associated with vaccines and vaccinations. Advanced bioinformatics tools have been developed to make effective use of these data and vaccine-related papers has increased exponentially since then. Databases that store, reorganize, and classify these data, promote the discovery of vaccine. Vaccine discovery, in turn, support the accumulation of vaccine data more efficiently in the database.

A variety of *in silico* models for vaccine design have been developed to predict T-cells and B-cell immune epitopes. After predicting candidate proteins, high-throughput assays can be used to evaluate efficacy of the vaccine.

4. Objectives:

In context of the previous sections, the objectives of this particular research are:

- 1. To identify and select homologous sequences in relation to the query nucleotide and protein sequence.
- 2. To compare both datasets and select the matching protein sequences with the nucleotide sequences.
- **3.** To generate phylogenetic tree of the selected sequences.
- 4. To analyze the properties of the selected protein using in silico methods.
- **5.** To predict the transmembrane regions, secondary structure content and secondary structure of the query protein using in silico methods.
- **6.** To predict the three-dimensional (3D) structure of the query protein using homology modeling techniques and identify its structural motifs.
- 7. To generate the three-dimensional (3D) structure of the desired epitope sequence.

CHAPTER 2 MATERIALS AND METHODS

DATA RETRIVAL

The National Centre For Biotechnology Information(NCBI):

The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information. Major databases include GenBank for DNA sequences and PubMed, a bibliographic database for the biomedical literature. Other databases include the NCBI Epigenomics database. All these databases are available online through the Entrez search engine.

Various genomic, protein and glycoprotein sequences of Hepatits Virus were identified using NCBI.(Fig:2.1)

URL Link:<u>https://www.ncbi.nlm.nih.gov/</u>

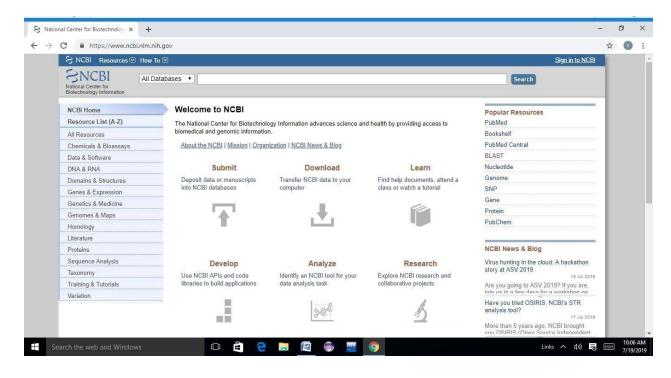


Fig:2.1 NCBI Homepage

EVOLUTIONARY ANALYSIS

CLUSTAL OMEGA

Clustal Omega is a completely rewritten and revised version of widely used Clustal series of programs for multiple sequence alignment. It can deal with very large numbers of DNA/RNA or protein sequences. The accuracy of the program has been considerably enhanced over earlier Clustal programs, through the use of the HHailgn method for aligning profile hidden Markov models. The program currently is used from the command line or can berun on line(Sievers and Higgins,2014)(Figure 2.2.1).

URL link: https://www.ebi.ac.uk/Tools/msa/clustalo/

🔋 🍿 Clustal Omega < Multiple Sequ	e × +							-	٥	×
← → C 🔒 European B	Bioinformatics Institute [GB]	https://www.ebi.ac.u	k/Tools/msa/clustalo/					Q \$:
	A EMBL-EBI Services	Research Training	Industry About us C	ι		EMBL-EBI	Hinxton +			
	Clustal Or	nega								
	Input form Web services	Help & Documentation	Bioinformatics Tools FAQ			Seedback	<share< td=""><td></td><td></td><td></td></share<>			
	Tools > Multiple Sequence Ali	gnment > <mark>Clustal O</mark> mega								
	Multiple Sec	quence Alio	anment							
	Clustal Omega is a new mult or more sequences. For the				ile-profile techniques to generate ent tools.	alignments betw	een three			
	Important note: This tool ca	n align up to 4000 sequen	ces or a maximum file size	of 4 MB.						
	STEP 1 - Enter your input	t sequences								
	Enter or paste a set of									
	PROTEIN									
	sequences in any support	ed format:								
							1			
	Or, upload a file: Choose Fil	e No file chosen		ι	Jse a <u>example sequence</u> <u>Clear sequ</u>	ence See more ex	ample inputs			
https://www.ebi.ac.uk/seqdb/confluence	e/display/JDSAT/Bioinformatics+	Tools+FAQ								

Figure 2.2.1: Clustal Omega homepage

BoxShade:

BoxShade is a program for pretty-printing multiple alignment output. The program itself does not carry out alignment of the selected nucleotide or protein sequences, as such, a multiple sequence alignment (MSA) programs like Clustal Omega or Clustal W2 needs to be used. Following so, the outputs of the programs are used as inputs for BoxShade to attain publishable images of the MSA results. The output format selected for the current study was RTF new(Figure 2.2.2)

URL link: https://embnet.vital-it.ch/software/BOX_form.html

Figure 2.2.2: BoxShade Homepage

BoxShade Server × +		-
\leftrightarrow \rightarrow C \cong https://embnet.vital-it.ch/sc	vftware/BOX_form.html	Q ☆
ExPASy Bontomitos Resource Portal	BoxShade	Hame
	Pretty Printing and Shading of Multiple-Alignment files This server uses version 3.21 of BOXSHADE, written by K. Hofmann and M. Baron. BOXSHADE is in	
	the public domain and available from Source Forge http://sourceforge.net/projects/boxshade/ This server takes a multiple-alignment file in either GCG's MSF-format or Clustal ALN-format.	
	Output can be created in the following formats:	
	RTF old (using colors)	
	RTF new (using shaded background)	
	XFIG-files (using shaded background) ASCII (showing similarities)	
	ASCII (showing differences)	
	 HPGL (using colors) 	
	 PICT (for later editing on MACs and PCs) If you have problems using this server (like getting no result), read this and see the FAQ list. 	
	Output format Postscript_portrait Font Size 10	
	Consensus Line no consensus line	
	Fraction of sequences: 0.5 V (that must agree for shading)	
	Enter sequence only if consensus to a single sequence' is required number:	
	Query title (optional)	
	 When pasting MSF or ClustalW files, please make sure that the pasted text starts with the header line of the alignment and contains no axta blains lines at the bottom. 	
Search the web and Windows	o 🖻 🖻 🔚 🖉 🖨 🦉 🧿	Links 🔨 🕼 🚍 🥅

Molecular Evolutionary Genetics Analysis(MEGA):

Molecular Evolutionary Genetics Analysis (MEGA) is an integrated tool for conducting sequence alignments, estimating divergence times, inferring phylogenetic trees, online database mining, molecular evolution rate estimation, inferring ancestral sequences and testing evolutionary hypotheses. It is used by biologists for reconstruction of evolutionary histories of species and hypothesizing/theorizing the extent and nature of the selective forces that shape the evolution of genes as well as species. The software is available online and can be downloaded (Figure 2.2.3)

URL link: https://www.megasoftware.net/

In this current study, MEGA X (Tamura et al., 2013) was used to generate phylogenetic trees for both nucleotide and protein sequences.

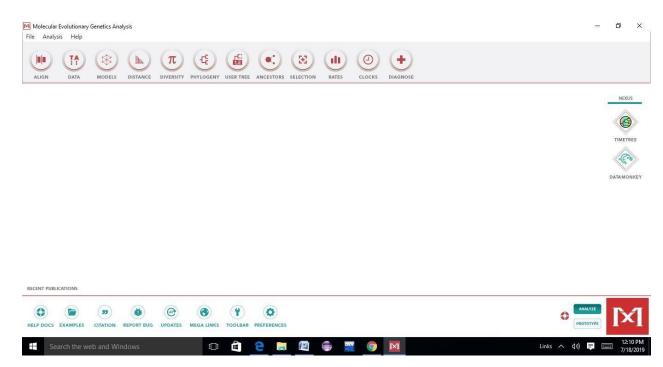


Figure 2.2.3: Mega X opening window

Nucleotide sequence data:

For the generation of nucleotide sequence based phylogenetic trees, in the input data section Nucleotide sequences were selected and it was confirmed as the proteincoding nucleotide sequence data. For the selection of genetic code, the Standard option was selected (Figure 2.2.3.1).

© 2022 IJRAR July 2022, Volume 9, Issue 3

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

Molecular Evolutionary Genetics Analysis File Analysis Help	- Ø
ALIGN DATA MODELS DISTANCE DIVERSITY PHYLOGENY USER TREE ANCESTORS SELECTION RATES CLOCKS DIAGNO	SE
	NEWS
Alignment Editor	TIMETRE
Select an Option	IME INC.
 Create a new alignment Open a saved alignment session Retrieve a sequence from a file 	DATAMON
(?) Help 🛞 Cancel ⊘ OK	
Done Loading	
RECENT PUBLICATIONS	
ELP DOCS EXAMPLES CITATION REPORT BUG UPDATES MEGA LINKS TOOLBAR PREFERENCES	
ELP DOCS EXAMPLES CHATION REPORT BUG OPDATES MEGALINKS TOOLBAR PREFERENCES	
	17.1
🗄 Search the web and Windows 💷 🖨 📋 🚇 🥌 🦉 🧕 🔟	Links 🧄 🗘 🗮 📰 12:1 7/18
	// 10
] Molecular Evolutionary Genetics Analysis	Links A (1)) 📮 🥅 12:1 7/18 — 🗇 🗙
Molecular Evolutionary Genetics Analysis	// 10
Molecular Evolutionary Genetics Analysis File Analysis Help TA S A C S A C S A C S C C C C C C C C C	
Molecular Evolutionary Genetics Analysis Tile Analysis Help ALIGN DATA MODELS DISTANCE DIVERSITY PHYLOGENY USER TREE ANCESTOR SELECTION RATES CLOCKS DIAGNOSE MODELS DISTANCE DIVERSITY PHYLOGENY USER TREE ANCESTORS SELECTION RATES CLOCK DIAGNOSE MXX: Alignment Explorer Data Edit Search Alignment Web	- Ö X Sequencer Display Help
Molecular Evolutionary Genetics Analysis Tie Analysis Help ALIGN DATA MODELS DISTANCE DIVERSITY PHYLOGENY USER TREE ANCESTOR SELECTION RATES CLOCKS DIAGNOSE MICH DATA MODELS DISTANCE DIVERSITY PHYLOGENY USER TREE ANCESTOR SELECTION RATES CLOCKS DIAGNOSE MXX: Alignment Explorer	- Ö X Sequencer Display Help
Molecular Evolutionary Genetics Analysis Tile Analysis Help ALIGN DATA MODELS DISTANCE DIVERSITY PHYLOGENY USER TREE ANCESTOR SELECTION RATES CLOCKS DIAGNOSE MODELS DISTANCE DIVERSITY PHYLOGENY USER TREE ANCESTORS SELECTION RATES CLOCK DIAGNOSE MXX: Alignment Explorer Data Edit Search Alignment Web	- Ö X Sequencer Display Help
Molecular Evolutionary Genetics Analysis Tile Analysis Help ALIGN DATA MODELS DISTANCE DIVERSITY PHYLOGENY USER TREE ANCESTOR SELECTION RATES CLOCKS DIAGNOSE MODELS DISTANCE DIVERSITY PHYLOGENY USER TREE ANCESTORS SELECTION RATES CLOCK DIAGNOSE MXX: Alignment Explorer Data Edit Search Alignment Web	- Ö X Sequencer Display Help
Molecular Evolutionary Genetics Analysis Tile Analysis Help ALIGN DATA MODELS DISTANCE DIVERSITY PHYLOGENY USER TREE ANCESTOR SELECTION RATES CLOCKS DIAGNOSE MODELS DISTANCE DIVERSITY PHYLOGENY USER TREE ANCESTORS SELECTION RATES CLOCK DIAGNOSE MXX: Alignment Explorer Data Edit Search Alignment Web	Sequencer Display Help
Molecular Evolutionary Genetics Analysis Tie Analysis Heip ALIGN DATA WODELS DISTANCE DIVERSITY PHYLOGENY USER TREE ANCESTORS SELECTION RATES CLOCKS DIAGNOSE DISTANCE DIVERSITY PHYLOGENY USER TREE ANCESTORS SELECTION RATES CLOCKS DIAGNOSE	Sequencer Display Help
Molecular Evolutionary Genetics Analysis Take Analysis Help:	Sequencer Display Help
Molecular Evolutionary Genetics Analysis ile Analysis Hep Image: Analysis Hep Image: Analysis Image: Analysis	Sequencer Display Help
Molecular Evolutionary Genetics Analysis File Analysis Heip Image: Analysis Heip Image: Analysis Image: Analysis Image: Analysis Image: Analysis <	Sequencer Display Help
Molecular Evolutionary Genetics Analysis Ele Analysis Heip Image: Analysis Heip Image: Analysis Image: Analysis Image: Analysis Image: Analysis <t< td=""><td>Sequencer Display Help</td></t<>	Sequencer Display Help
Molecular Evolutionary Genetics Analysis Ele Analysis Heip Image: Analysis Heip Image: Analysis Image: Analysis Image: Analysis Image: Analysis <t< td=""><td>Sequencer Display Help</td></t<>	Sequencer Display Help
Molecular Evolutionary Genetics Analysis File Analysis ALGN DATA DES DISTANCE OVERSITY PHYLOGENY USER TREE ANCESTOR SELECTON Interest Phylocol Interest Phylocol	Sequencer Display Help
Modecular Evolutionary Genetics Analysis Eff: Analysis Mile Models Modecular Evolutionary Genetics Analysis Mile Mile Models Distance Mile Mile Models Distance Mile Mile	Sequencer Display Help

Figure 2.2.3.1: Steps taken for setting parameters for nucleotide sequence data.(a) Input data, (b)Confirmation

Using the Phylogeny option in MEGA 6, a Neighbor-Joining (NJ) phylogenetic tree was constructed. In the Analysis Preferences section of the software, in the statistical method, NJ method was selected. For the test of phylogeny the Bootstrap method was selected to determine the robustness with replicates set at 500. This was done as the NJ method does not have any clade support measure. The Nucleotide Substitutions type was selected. The model used was Maximum Composite Likelihood. Transitions and Transversions were selected as the substitutions to be included. For Rates and Patterns, the Rates were set to Gamma distributed (G) and the gamma parameter was set to 2. The Pattern among lineages was set to Homogenous and for gaps and missing data, Complete deletion was selected (Figure 2.2.3.1).

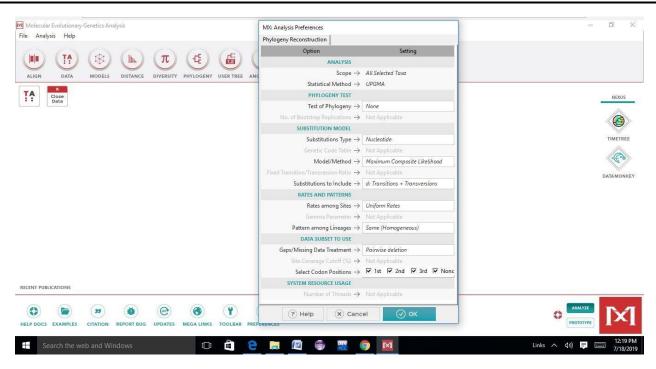


Figure 2.2.3.1(c): Parameters used for the contruction of phylogenetic trees for nucleotide sequence data

Protein sequence data:

For the generation of protein sequence based phylogenetic trees, in the input data section Protein sequences were selected (Figure 2.2.3.2).

Molecular Evolutionary Genetics Analysis File Analysis Help	– ø ×
ALIGN DATA MODELS DISTANCE DIVERSITY PHYLOGENY USER TREE ANCESTORS SE	ELECTION RATES CLOCKS DIAGNOSE
Open a sa	TIMETREE
RECENT FUBLICATIONS	▲ MALVZZ ■ PROTOTIVE ■ PROTOTIVE ■ ■ 12:17 PM Links ∧ ■ ■ 12:17 PM
Molecular Evolutionary Genetics Analysis File Analysis Help	- D ×
ALIGN DATA MODELS DISTANCE DIVERSITY PHYLOGENY USER TREE ANCESTORS SE	ELECTION RATES CLOCKS DIAGNOSE
	MX: Alignment Explorer Data Edit Search Alignment Web Sequencer Display Help Image: Search Alignment Search Alignment Web Sequencer Display Help Image: Search Alignment Search Alignment Web Sequencer Display Help Image: Search Alignment Search Alignment Web Sequencer Display Help Image: Search Alignment Search Al
	Data Type for Alignment Are you building a DNA or protein sequence alignment? DNA Protein Cancel
RECENT PUBLICATIONS	
HELP DOCS EXAMPLES CITATION REPORT BUG UPDATES MEDA LINKS TOOLBAR PREFERENCES	📳 🌐 🌉 🌍 🔟 Links ^ (1) 📮 📰 12:17 PM Links ^ (1) 📮 📰 7/18/2019

Figure 2.2.3.2: Input data type selection for protein data (a)Input data

(b) Confirmation

Using the Phylogeny option in MEGA 6, a Neighbor-Joining (NJ) phylogenetic tree was constructed. In the Analysis Preference section, in the statistical method NJ method was selected. The Bootstrap method was selected for the test of phylogeny with replicates set at 500. Amino acid Substitutions type was selected. The model used was Poisson model. For Rates and

© 2022 IJRAR July 2022, Volume 9, Issue 3

Patterns, the Rates were set to Gamma distributed (G) and the gamma parameter was set to 2. The Pattern among lineages was set

to Homogenous and for gaps and missing data, Complete deletion was selected (Figure 2.2.3.2).

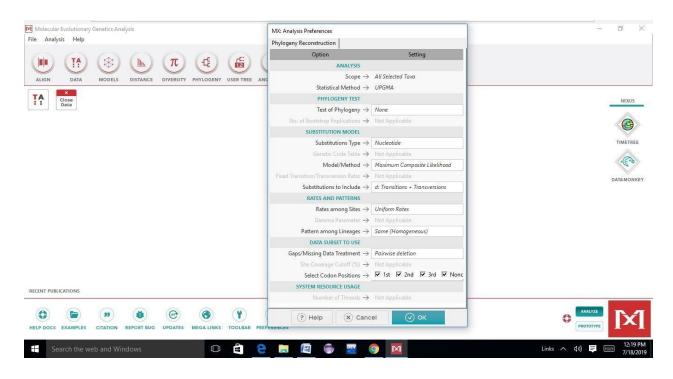


Figure 2.2.3.2 (c): Parameters used for the contruction of phylogenetic trees for protein sequence data

PREDICTION OF ANTIGENS AND SUBUNIT VACCINES

2.3.1.Vaxijen 2.0

The first server for alignment-independent prediction of protective antigens of bacterial, viral and tumour origin. VaxiJen contains models derived by auto- and cross-covariance pre-processing of amino acids properties. The predictive ability of our models was tested by internal leave-one-out cross- validation on training sets and by external validation on test sets. The models showed remarkable stability, as tested by combinations of the positive set and five different negative sets. Thus, VaxiJen is a reliable and consistent tool for the prediction of protective antigens. It can be used singly or in combination with other bioinformatics tools used for reverse vaccinology.

For determining the protective antigen property of various amino acid sequences, we have used the VaxiJenanalysis.(Figure 2.3.1)

URL Link: http://www.ddg-pharmfac.net/vaxijen/VaxiJen.html

← → C ③ Not secure www.ddg-pharmfac.net/vaxijen/V	/axiJen/VaxiJen.html		☆	0	:
VaxiJen	v2.0				
VaxiJen: Prediction of Protective Antig	ens and Subunit Vaccines.				1
Ci Select a TARGET ORGANISM: Ba Vir Tu		Help nat to upload: THRESHOLD:			
VariJen Help Page Other Prediction Servera	Citation Bacterial immunogens dataset				
Other EJIVR Bioinformatics Web-Sites:	AntiJen EpiJen MHCPred LipPred BPROMPT				
Search the web and Windows	🛱 😧 📑 🙋 🥌 🛒 🧕		Links 🔨 🕼 🗮 📰	12:37 F 7/18/20	

Figure 2.3.1.: VaxiJen 2.0 Homepage 2.4PREDICTION OF T-CELL

EPITOPE

NetCTL 1.2 Server

NetCTL 1.2 server predicts CTL epitopes in protein sequences. The current version 1.2 is an update to the version 1.0. The version 1.2 expands the MHC class I binding predicition to 12 MHC supertypes including the supertypes A26 and B39. The accuracy of the MHC class I peptide binding affinity is significantly improved compared to the earlier version. Also the prediction of proteasonal cleavage has been improved and is now identical to the predictions obtained by the <u>NetChop-3.0 server</u>. The updated version has been trained on a set of 886 known MHC class I ligands.

The method integrates prediction of peptide MHC class I binding, proteasomal C terminal cleavage and TAP transport efficiency. The server allows for predictions of CTL epitopes restricted to 12 MHC class I supertype. MHC class I binding and proteasomal cleavage is performed using artificial neural networks. TAP transport efficiency is predicted using weight matrix.

Using this software, we have predicted the CTL epitopes in both the gene and protein sequences. (Figure:2.4.1)

URL link: http://www.cbs.dtu.dk/services/NetCTL/

Score Sens > 1.25 > 1.00 > 0.90 > 0.75 > 0.50 The project is coll
> 1.00 > 0.90 > 0.75 > 0.50 The project is coll
> 0.90 > 0.75 > 0.50 The project is coll
> 0.50 The project is coll
The project is coll
UDIVII 3 SION
aste a single sei
dote a emgre de
Choose File N
Choose File N
Choose File N upertype A1
Choose File N Supertype A1
Choose File N upertype A1 Veight on C terr
Choose File N upertype A1 Veight on C terr ort by score
Choose File N iupertype A1 Veight on C terr iort by score []
Choose File N supertype A1 Veight on C terr fort by score Submit Clear Restrictions:
Choose File N Supertype A1 Veight on C terr Sort by score Submit Clear Restrictions:
Submit e file in FA Choose File N Supertype A1 Weight on C term Sort by score Submit Clear Restrictions: at most 5000 seq Confidentiality:

Figure 2.4.1: Net CTL Homepage

IMMUNE EPITOPE DATABASE AND ANALYSIS RESOURCE(IEDB)

The Immune Epitope Database (IEDB) is a freely available resource funded by <u>NIAID</u>. It catalogs experimental data on antibody and T cell epitopes studied in humans, non-human primates, and other animal species in the context of infectious disease, allergy, autoimmunity and transplantation. The IEDB also hosts tools to assist in the prediction and analysis of epitopes.

Using this software, identification of epitopes and antigens are done. (Figure 2.4.2)

URL link: https://www.iedb.org/



Figure: 2.4.2: IEDB Homepage

PREDICTION OF B-CELL EPITOPE

Antibody epitope prediction:

This is a bioinformatics tool for B-cell epitope prediction.

The following methods are provided for B-cell epitope prediction:

- O Chou&Fasman beta-turn prediction
- O Emini surface accessibility prediction
- O Karplus & schulz flexibility prediction
- O Kolaskar&Tongaonkar antigenicity
- O Parkar hydrophilicity prediction
- O Bepipred linear epitope prediction

Using this software, prediction of B-cell epitopes is done. (Figure 2.5.1)

URL Link: http://tools.immuneepitope.org/bcell/

	x
M (no subject) - vidyalakdhmi1096: X 🔮 Antibody Epitope Prediction X +	
← → C ▲ Not secure tools.immuneepitope.org/bcell/	🕁 💽 E
IEDB Analysis Resource	
Home Help Example Reference Download Contact	
Antibody Epitope Prediction	
Specify Input	
Enter a Swiss-Prot ID (example: P02195)	
Or enter a protein sequence in plain format (50000 residues maximum).	
Choose a method:	
Bepipred Linear Epidope Prediction	
Bepjared Linear Epidope Prediction 2.0	
Chou & Fasman Beta-Turn Prediction	
Emini, Surface Accessibility, Prediction	
Karplus & Schulz Flexibility. Prediction	
Kolaskar & Tongaonkar Antigenicity	
Parker Hydrophilicity Prediction	
Submit Reset	
© 2005-2020 <u>IEDB Home</u> Supported by a contract from the <u>National Institute of Allerry</u> and <u>Infectious Diseases</u> , a component of the National Institutes of Health in the Department of Health and Human Services.	
suppored by a contract from the reational institute of Allergy and Infectious Diseases, a component of the National Institutes of Health in the Department of Health and Human Services.	
	10:05 AM
🕂 🖸 Type here to search 🛛 🕹 🛱 🤮 🧮 🏦 🕿 🧑 🐙 🥵 🖉	ヽ IEI (1) ENG 1/24/2020 4
	10,000

Figure 2.5.1: Antibody Epitope Prediction Homepage

BepiPred 1.0:

BepiPredpredicts the location of linear B-cell epitopes using a combination of a hidden Markov model and a propensity scale method.

Using this software, B-cell epitopes are identified. (Figure 2.5.2) URL link:

http://www.cbs.dtu.dk/services/BepiPred-1.0/

← → C ③ Not secure cbs.dtu.dk/services/BepiPred-	1.01		A
DTU Bioinformatics Department of Bio and Health Informatics	Services are gradually being migrated to <u>ht</u> In the near future, cbs.dtu.dk will be retired	t <u>ps://services.healthtech.dtu.dk/</u> . Please try out the new site.	
BepiPred 1.0 Server			
RepiPred 1.0 server predicts the location of linear B-cell epitopes using a con-	mbination of a hidden Markov model and a propensity scale method.		
Instructions	Output format	Data sets	Article abstract
UBMISSION			
aste a single sequence or several sequences in <u>FASTA</u> format into the field	f below:		
Choose File No file chosen			
Choose File No file chosen Core threshold for epitope assignment 0.35			
Choose File No file chosen Core threshold for epitope assignment O 35 Submit Clear fields			
Choose File No file chosen core threshold for epitope assignment 0.35 Submit Oter fields testrictions:	quence not leas than 10 and not more than 6000 amino acids.		
Choose File No file chosen core threshold for epitope assignment 0.35 Submit Clear fields testrictions: testroitons: termost 2000 sequences and 200,000 amino acids per submission, each set confidentiality:	quence not less than 10 and not more than 6000 amino acids.		
Choose File No file chosen core threshold for epitope assignment 0.35 Submit Clear fields estrictions: most 2000 sequences and 200,000 amino acids per submission, each set onfidentiality: the sequences are kept confidential and will be deleted after processing	querice not less than 10 and not more than 6000 amino acids.		
Choose File No file chosen core threshold for epitope assignment 0.35 Submit Clear fields estrictions: Iron32000 assupences and 200,000 amino acids per submission, each see confidentiality: The sequences are kept confidential and will be deleted after processing citATIONS	querice not less than 10 and not more than 6000 amino acids.		
	quence not leas than 10 and not more than 6000 amino acids.		
Choose File No file chosen core threshold for epitope assignment 0.35 Submit Clear fields estrictions: mod 2000 sequences and 200,000 amino acids per submission; each see onfidentiality: the sequences are kept confidential and will be deleted after processing. INTATIONS or publication of results, please cite: mproved method for predicting linear B-cell epitopes ms Erik Photopatan Larsen; Ole Lund and Morten Weisten mmunom Resarch 2.2, 2009	quence not leas than 10 and not more than 6000 amino acids.		
Choose File No file chosen Createshold for epitope assignment 0.35 Submit Clear fields setrictions: I most 2000 sequences and 200,000 amino acids per submission, each see onfidentiality: the sequences are kept confidential and will be deleted after processing. ITATIONS To publication of results, please cite: nproved method for predicting linear B-cell epitopes metric for producting linear B-cell epitopes metric for predicting linear B-cell epitopes metric for predicting linear B-cell epitopes metric for predicting linear B-cell epitopes	quence not leas than 10 and not more than 6000 amino acids.		

Figure 2.5.2: BepiPred Homepage

ALLERGENCITY PREDICTION

Allertop V 2.0:

This is a Bioinformatics tool for allergenicity prediction based on a novel descriptor fingerprint approach.

With the help of this tool, the allergenicity prediction of various sequences was done. (Figure: 2.6.1)

URL link: http://www.ddg-pharmfac.net/allertop/

AllerTOP · bio.tools × S Bio	oinformatics tool for allergenic X +	- 0 ×
\leftrightarrow \rightarrow C (i) Not secure www.ddg-p	pharmfac.net/AllerTOP/	☆ 🔮 :
	(2) Home (2) Data sets (2) Method description (2) Contact	
	AllerTOP v. 2.0	
	Bioinformatics tool for allergenicity prediction prediction Development of the second	
	Enter a PROTEIN sequence here as a plain text (one letter code)	
	Get the result	
	Copyright © MU - Solia - Faculty of Pharmacy - Department of Chemistry	
Search the web and Windows	🗆 🖻 😫 🛤 🖉 🖶 🦉	Links ヘ (小)) 📮 📖 1:03 PM 7/18/2019

Figure 2.6.1: AllerTOP V 2.0 homepage

AllergenFP v.1.0

This is a Bioinformatics tool for allergenicity prediction based on a novel descriptor fingerprint approach.

With the help of this tool, the allergenicity prediction of various sequences was done. (Figure: 2.6.2)

URL link: http://ddg-pharmfac.net/AllergenFP/

Rioinformatics tool for allergenic X +			- 0 >
← → C ③ Not secure cdg-pharmfac.r	net/AllergenFP/		* 🔘
	🏶 Home 🔅 Data sets 🏾 🎘 Method di	escription 💭 Contact	
	AllergenFP v.1.0	MISKUCLSLIMAWADQVDXKNANNEIK VWVDVDESCONHRGPATTEN DAN QVTK VERSCHSLAMAGAACHF MKOPUNGSCHSCHSLAMAGAACHF	
	Bioinformatics tool for allergenicity prediction based on a novel descriptor fingerprint approach	INICO1001001001001000000000000000000000000	
	Enter a PROTEIN sequence here as a plain text (ane l		
	Get the result		
	Copyright @ NU - Sofia - Faculty of Pharmacy	- Department of Chemistry	
Search the web and Windows	u ê 🦻 📄 😰 🌲	9	Links ヘ ロッ) 📮 🚃 1:04 PM

Figure 2.6.2: Allergen FP v 1.0 Homepage

3D MODELLING OF AN EPITOPE

PEP FOLD:

PEP-FOLD is a *de novo* approach aimed at predicting peptide structures from amino acid sequences. This method, based on structural alphabet SA letters to describe the conformations of four consecutive residues, couples the predicted series of SA letters to a greedy algorithm and a coarse-grained force field. PEP-FOLD latest evolution improves performance for linear peptides up to 36 amino acids - best model with an averaged RMSd of 2.1 A from NMR structure, also allows user specified constraints such as disulfide bonds and inter-residue proximities.

Using the PEP-FOLD analysis, the structure of various amino acid sequences were predicted. (Figure 2.7.1)

URL link: http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD/

a Doga Posician Service Ser	S PEP-FOLD Peptide Structure Pred 🗙 🔡 Moby	le portal × +		٥	×
Pepsis Signation Signation Signation Signation Signation Signation Signation Conception		niv-paris-diderot.fr/cgi-bin/portal.py#forms::PEP-FOLD	ର ☆		
Shiphiph Biological BoSatch ForSp1 ForSp1 Healgen-Cheat InterCoold MTAurbookMTOpesSorean Pro2 Pro2 Pro10 Pro2 Pro10 Pro2 Pro10 Pro2 Pro10 P	Pepidas Securana Sinutore Tast Atorial Das formas Hontocle Delingut PDBIngut	De noro peptide structure predictor.)
BOSand PCP-Org4 For-Org4 For-Org4 For-Org4 Hadig-botat Innet-Cost2 MTAutoDockTOperSoren PCB PCP 00 PCP 00					
Interest PER-PQUE association for sections and minimization adjustment adj	SCSeanh AS-Drog4 Spolat Trig2 AntaligDock1 Trialnobock1 Trialnobock1 Trialnobock1 Trialnobock1 Trialnobock1 Trialnobock1 Trialnobock1 FieldSeanh PEP-FOLD PEP-FOLD PEP-FOLD PEP-FOLD SeaBAQ SAFARa SAFARa	Test the service (1)bl PDB entry will be used specifying 3-11 as \$\$ bond constraint, input parameters will be discarded.No Veput Data Peptide amino acid sequence patie	rdi	clour	
Shen Y, Maupett J, Derreumauz P, Tufféry P. http://bisservrpbs.univ-partie-dideot.fintervices/PEP-FOLD		http://bidserv/pbs.univ-paris-dident/frienvides/PEP-FOLD			

Figure 2.7.1: PEP-FOLD Homepage

PHYRE2:

The Phyre and Phyre2 servers predict the three-dimensional structure of a protein sequence using the principles and techniques of homology modeling. Because the structure of a protein is more conserved in evolution than its amino acid sequence, a protein sequence of interest (the target) can be modeled with reasonable accuracy on a very distantly related sequence of known structure (the template), provided that the relationship between target and template can be discerned through sequence alignment. Currently the most powerful and accurate methods for detecting and aligning remotely related sequences rely on profiles or hidden Markov models (HMMs).

Using this software, the structure of various amino acid sequences were predicted. (Figure 2.7.2)

URL link: http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index

PHYRE2 Protein Fold Recognition × +	-		×
← → C O Not secure sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index		☆ (:
Subscribe to Phyre at Google Groups Email: Subscribe Visit Phyre at Google Groups			
Protein Homology/analogY Recognition Engine V 2.0			
🛄 🔩 😧 🗹 👘			
Cambridge 2019 Workshop Older Workshops Phyre2 paper			
E-mail Address Optional Job description			
Amino Acid Sequence 🔳			
Or try the sequence finder Modelling Mode Vormal Normal Norm			
Please tick as appropriate. NOT for Profit (FOR Profit (Commercial) Other • Phyre Search Reset			
3426017 submissions since Feb 14 2011			
📲 🔿 Type here to search 🛛 🖓 🖽 🔁 📻 💼 😭 🕿 👩 🜌		7:34 PM 2/1/2020	13

Figure 2.7.2: PHYRE2 Homepage

CHAPTER 3 RESULTS AND DISCUSSION

DATA RETRIVAL

The National Centre For Biotechnology Information (NCBI):

The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information.

Various genomic, protein and glycoprotein sequences of Hepatitis Virus were identified using NCBI.

S.No.	Virus	Accession ID
1.	HEPATITIS A	MK829707
2.	HEPATITIS B	MK075117
3.	HEPATITIS C	MK527509
4.	HEPATITIS D	MH844625
5.	HEPATITIS E	LC436450

Table3.1.1a: List of Hepatitis virus genomes selected for vaccine design

S.No	Virus	Accession ID
1.	HEPATITIS A	MK829707
2.	HEPATITIS B	MK075117
3.	HEPATITIS C	MK527509
4.	HEPATITIS D	MH844625

5.	HEPATITIS E	LC436450

Table3.1.1b: List of Hepatitis virus genome Translation sequences selected for vaccine design

S.No	Virus	Accession ID
1.	HEPATITIS A	AAC39862
2.	HEPATITIS B	AAX44104
3.	HEPATITIS C	AAL25079
5.	HEPATITIS E	ATU81864

Table3.1.1c: List of Hepatitis virus glycoprotein sequences selected for vaccine design

EVOLUTIONARY ANALYSIS

CLUSTAL OMEGA:

-

This is used for multiple sequence alignment.

Various gene sequences of hepatitis virus were uploaded in the clustal omega and the results of phylogenetic tree is mentioned below.

Alignments	Result Summary	Phylogenetic Tree	Submission Details	
	··			
Phylog	enetic Tre	e		
This is a Noi	abbour ioinina tree	without distance cor	rections	
THIS IS & IVER	gribbar-joining tree	without distance con	CUUIS.	
Deventered	Neule en estis Tara I) at a		
Download F	Phylogenetic Tree [Data		
Contraction of the second second	Phylogenetic Tree [Cladogram	Data Real		
Contraction of the second second	, ,		MK527500 1 0 28112	
Contraction of the second second	, ,		MK527509.1 0.28112 MH844625 1 0 31584	
Contraction of the second second	, ,		MH844625.1 0.31584	
Contraction of the second second	, ,			

Fig 3.2.1a: Phylogenetic tree of genomic sequences

Various protein sequences of hepatitis virus were uploaded in the clustal omega and the results of phylogenetic tree is mentioned below.

Phylogenetic Tree	
This is a Neighbour-joining tree without distance	corrections.
Download Phylogenetic Tree Data	
Branch length: Cladogram Real	
	MK075117.1 0.24747
	MK829707.1 0.25646 MK527509.1 0.23227
	MH844625.1 0.23755
I	LC436450.1 0.21923

Fig 3.2.1b: Phylogenetic tree of protein sequences

Molecular Evolutionary Genetics Analysis (MEGA):

Using this software, the genome sequence is uploaded and a phylogenetic tree is constructed. The results are displayed below:

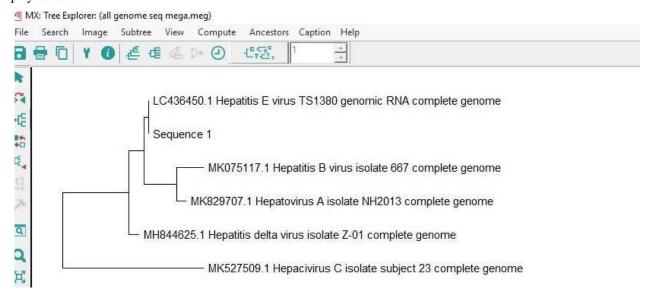


Fig 3.2.2a: Phylogenetic tree of Genomic sequence

Using this software, the glycoprotein sequence is uploaded and a phylogenetic tree is constructed. The results are displayed below. The glycoprotein sequence is retrieved from UNIPROT.

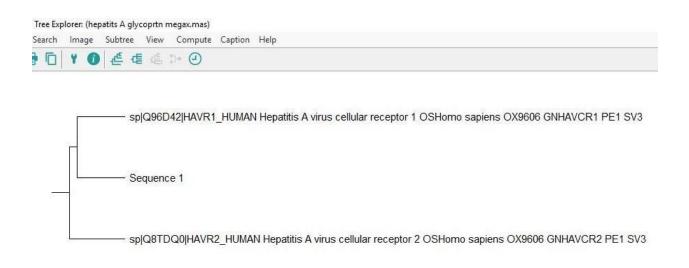


Fig 3.2.2b: Phylogenetic tree of Glycoprotein sequence.

PREDICTION OF ANTIGENS AND SUBUNIT VACCINES

3.3.1. Vaxijen 2.0

For determining the protective antigen property of various amino acid sequences, we have used the VaxiJen analysis and the results are displayed below.

S.No	Virus	Overall	prediction protective	for	Nature	
		Antigen				
1.	HEPATITIS A	0.5464			Probable Antigen	
2.	HEPATITIS B	0.5509			Probable Antigen	
3.	HEPATITIS C	0.4597			Probable antigen	non-
4.	HEPATITIS D	0.4759			Probable antigen	non-

5.	HEPATITIS E	0.3817	Probable	non-
			antigen	

Table3.3.1a: Determination of Antigenic property of translation sequences using Vaxijen 2.0

For determining the protective antigen property of various Glycoprotein sequences, we have used the VaxiJen analysis and the results are displayed below.

S.No	Virus	Overall	prediction protective	for	Nature
		Antigen			
1.	HEPATITIS A	0.5605			Probable Antigen
2.	HEPATITIS B	0.4493			Probable non- antigen
3.	HEPATITIS C	0.5728			Probable Antigen
4.	HEPATITIS E	0.5975			Probable Antigen

Table3.3.1b: Determination of Antigenic property of Glycoprotein sequences using Vaxijen 2.0

PREDICTION OF T-CELL EPITOPE

3.4.1. NetCTL 1.2 Server:

NetCTL 1.2 server predicts CTL epitopes in protein sequences.

Using this software, we have predicted the CTL epitopes in the gene sequences. The gene sequences of various Hepatitis Virus are uploaded in the NetCTL Server and the results are diaplayed below. (Figure:3.4.1)

RBIOLOGI CALSEQU ENCEANA	CENT	ERFO	
CALSEQU	RBIO	LOGI	

NetCTL-1.2 Server - prediction results

Technical University of Denmark

NetCTL-1.2 predictions using MHC supertype A1. Threshold 0.500000

569	ID	Sequence	pep	HTSDHMSIY	aff	0.7977	aff_rescale	3,3870	cle	0.9422	tap	2.9400	COMB	3.6753	<-E
103	ID	Sequence	pep	KLDVVKLLY	aff	0.6794	aff rescale	2,8844	cle	0.9152	tap	3,0290	COMB	3,1732	<-E
2196	ID	Sequence	pep	CLEKEMIEY	aff	0,6048	aff rescale	2,5677	cle	0.8369	tap	2,8130	COMB	2,8339	<-E
1920	ID	Sequence	pep	AIDACPLDY	aff	0.5967	aff_rescale	2.5336	cle	0.4443	tap	3.1530	COMB	2.7579	<-E
1260	ID	Sequence	pep	YTKPVASDY	aff	0,5603	aff rescale	2,3791	cle	0.9514	tap	2.8900	COMB	2,6663	<-E
36	ID	Sequence	pep	RTAVTGASY	aff	0.5145	aff_rescale	2.1845	cle	0.9638	tap	3.0250	COMB	2.4803	<-E
835	ID	Sequence	pep	SOANISLEY	aff	0.5116	aff rescale	2.1724	cle	0.9600	tap	2.9650	COMB	2.4646	<-E
433	ID	Sequence	pep	KSAHQKGEY	aff	0.4757	aff_rescale	2.0197	cle	0.3729	tap	3.0990	COMB	2.2306	<-E
475	ID	Sequence	pep	NLECFAPLY	aff	0.4727	aff_rescale	2.0072	cle	0.9074	tap	2.8460	COMB	2.2856	<-E
947	ID	Sequence	pep	ETDLCFLLH	aff	0.4676	aff_rescale	1.9855	cle	0.0999	tap	-0.8830	COMB	1.9563	<-E
712	ID	Sequence	pep	KTDSTFGLV	aff	0.4628	aff_rescale	1.9648	cle	0.5065	tap	0.0850	COMB	2.0450	<-E
1106	ID	Sequence	pep	FKDGICWLY	aff	0.4589	aff_rescale	1.9483	cle	0.9364	tap	2.8440	COMB	2.2309	<-E
1287	ID	Sequence	pep	TTDEDWSDF	aff	0.4579	aff_rescale	1.9440	cle	0.8409	tap	2.4570	COMB	2.1930	<-E
2050	ID	Sequence	pep	IINNVNLYY	aff	0.4451	aff_rescale	1.8897	cle	0.9685	tap	3.0360	COMB	2.1868	<-E
423	ID	Sequence	pep	DTPYRVNRY	aff	0.3567	aff_rescale	1.5146	cle	0.9409	tap	2.6260	COMB	1.7871	<-E
				SVTEQSEFY			aff_rescale			0.9301		3.1280	COMB	1.7870	
462	ID	Sequence	pep	ASHVRVNVY	aff	0.3421	aff_rescale	1.4524	cle	0.9404	tap	3.1860	COMB	1.7528	<-E
				FVKSGILLY			aff_rescale			0.9615		2.9590		1.7360	
1864	ID	Sequence	pep	WLDENGLLL	aff		aff_rescale	1.4043	cle	0.9316	tap	0.7800	COMB	1.5831	<-E
				HSDEYLSFS			aff_rescale			0.0428		-2.3310		1.2562	
				VASDYWDGY			aff_rescale			0.8328		2.8900		1.6083	
				LVSIQIANY			aff_rescale			0.9737		3.0330		1.6174	
				GVEPEKNIY			aff_rescale			0.8936		2.6880		1.5720	
				ISDDNDSAV			aff_rescale			0.9099		0.1720	COMB	1.4377	
				TSDHMSIYK			aff_rescale			0.2837		0.2850		1.3441	
				YTAIGKLIV			aff_rescale			0.5167		0.1230		1.2969	
				LMDLLSSLV			aff_rescale			0.7761		0.3180		1.3365	
				WSDFCQLVS			aff_rescale			0.0294		-2.5470		1.0246	
				FTDLELHGL			aff_rescale			0.5438		0.7940		1.2393	
				FTSNKYWSK			aff_rescale			0.5818		0.4450		1.2237	
				ASDYWDGYS			aff_rescale			0.0231		-2.1900		0.9975	
				HIDKNMINF			aff_rescale			0.4409		2.3730		1.2593	
				YTEEHEMMK			aff_rescale			0.5405		0.1740		1.0882	
				CQALKILCY			aff_rescale			0.4190		2.8710		1.1950	
				FSQANISLF			aff_rescale			0.4937		2.4960		1.1779	
1076	ID	Sequence	pep	QMDSRMMEL	aff	0.2297	aff_rescale	0.9752	cle	0.9308	tap	0.8570	COMB	1.1577	<-E

Fig 3.4.1a: NetCTL-1.2 Server results of Hepatitis A

CEN	TERF	-0
RBI	OLOI	GI
CAL	SEO	ιU
EMC	EAN	i A

NetCTL-1.2 Server - prediction results Technical University of Denmark

NetCTL-1.2 predictions using MHC supertype A1. Threshold 0.750000

4	27	ID	Sequence	pep	SLDVSAAFY	aff	0.7087	aff_rescale	3.0091	cle	0.9692	tap	2.8690	COMB	3.2979	<-E
6	77	ID	Sequence	pep	LSKQYLTLY	aff	0.5140	aff_rescale	2.1825	cle	0.9399	tap	2.8620	COMB	2.4666	<-E
84	88	ID	Sequence	pep	PTTGRTSLY	aff	0.4768	aff_rescale	2.0246	cle	0.9754	tap	2.5190	COMB	2.2969	<-E
2	78	ID	Sequence	pep	QSAVRKAAY	aff	0.4575	aff_rescale	1.9424	cle	0.6593	tap	2.9720	COMB	2.1899	<-E
	55	ID	Sequence	pep	KVGNFTGLY	aff	0.3253	aff_rescale	1.3810	cle	0.9645	tap	2.9840	COMB	1.6748	<-E
5	59	ID	Sequence	pep	SVQHLESLY	aff	0.2601	aff_rescale	1.1045	cle	0.7522	tap	3.1850	COMB	1.3766	<-E
4	19	ID	Sequence	pep	LSSNLSWLS	aff	0.2436	aff_rescale	1.0344	cle	0.0300	tap	-2.1570	COMB	0.9311	<-E
74	46	ID	Sequence	pep	GTDNSVVLS	aff	0.2313	aff_rescale	0.9819	cle	0.0341	tap	-2.6130	COMB	0.8564	<-E
10	65	ID	Sequence	pep	SASFCGSPY	aff	0.2250	aff_rescale	0.9553	cle	0.9315	tap	3.1580	COMB	1.2529	<-E
7	52	ID	Sequence	pep	VLSRKYTSY	aff	0.2191	aff_rescale	0.9302	cle	0.9451	tap	3.0490	COMB	1.2244	<-E
54	49	ID	Sequence	pep	YMDDVVLGA	aff	0.2078	aff_rescale	0.8823	cle	0.9353	tap	-0.5560	COMB	0.9948	<-E
41	80	ID	Sequence	pep	NSCSRNLYV	aff	0.1927	aff_rescale	0.8180	cle	0.2022	tap	0.3780	COMB	0.8672	<-E
54	94	ID	Sequence	pep	YSHPIILGF	aff	0.1895	aff_rescale	0.8045	cle	0.9002	tap	2.6330	COMB	1.0712	<-E
	59	ID	Sequence	pep	FTGLYSSTV	aff	0.1810	aff_rescale	0,7685	cle	0.6514	tap	0.1760	COMB	0.8750	<-E
4	79	ID	Sequence	pep	HNSCSRNLY	aff	0.1780	aff_rescale	0.7559	cle	0.2533	tap	2.7250	COMB	0.9302	<-E
74	49	ID	Sequence	pep	NSVVLSRKY	aff	0.1724	aff_rescale	0.7320	cle	0.7892	tap	2.9410	COMB	0.9975	<-E
64	65	ID	Sequence	pep	QAFTFSPTY	aff	0.1697	aff_rescale	0.7203	cle	0.9754	tap	3.2030	COMB	1.0268	<-E
1	50	ID	Sequence	pep	TLWKAGILY	aff	0.1683	aff_rescale	0.7145	cle	0.9772	tap	3.0720	COMB	1.0147	<-E
4	86	ID	Sequence	pep	LYVSLMLLY	aff	0.1678	aff_rescale	0.7124	cle	0.8825	tap	3.4120	COMB	1.0154	<-E
20	69	ID	Sequence	pep	ASSSSSCLH	aff	0.1658	aff_rescale	0.7040	cle	0.1626	tap	-0.3620	COMB	0.7102	
5	91	ID	Sequence	pep	YSLNFMGYV	aff	0.1644	aff_rescale	0.6981	cle	0.6450	tap	0.3230	COMB	0.8110	<-E
7!	57	ID	Sequence	pep	YTSYPWLLG	aff	0.1628	aff_rescale	0.6912	cle	0.0548	tap	-1.3400	COMB	0.6325	
1	33	ID	Sequence	pep	YPEHVVNHY	aff	0.1624	aff_rescale	0.6897	cle	0.9721	tap	2.4040	COMB	0.9557	<-E
1	24	ID	Sequence	pep	PLDKGIKPY	aff	0.1578	aff_rescale	0.6699	cle	0.9615	tap	2.3360	COMB	0.9309	<-E
5	29	ID	Sequence	pep	FTSAICSVV	aff	0.1497	aff_rescale	0.6356	cle	0.8924	tap	0.1450	COMB	0.7767	<-E
3	20	ID	Sequence	pep	VLSCWWLQF	aff	0.1496	aff_rescale	0.6354	cle	0.9637	tap	2.4670	COMB	0.9033	<-E
- 43	20	ID	Sequence	pep	SSNLSWLSL	aff	0.1449	aff_rescale	0.6154	cle	0.8384	tap	1.0020	COMB	0.7912	<-E
5	67	ID	Sequence	pep	YAAVTNELL	aff	0.1407	aff_rescale	0.5974	cle	0.9178	tap	1.0520	COMB	0.7877	<-E
					YRPLLRLLY		0.1395	aff_rescale	0.5921	cle	0.9711	tap	3.1440	COMB	0.8950	<-E
	63	ID	Sequence	pep	YSSTVPCFN	aff	0.1366	aff_rescale	0.5798	cle	0.0256	tap	-1.2510	COMB	0.5211	
7	90	ID	Sequence	pep	PSRGRLGLY	aff	0.1320	aff_rescale			0.7750		2.3950	COMB	0.7963	<-E
11	87	ID	Sequence	pep	QTSKRHGDK	aff	0.1299	aff_rescale	0.5515	cle	0.9707	tap	0.3470	COMB	0.7144	
					SLMLLYKTY			aff_rescale			0.9586		3.1090		0.8330	<-E
70	91	ID	Sequence	pep	ATPTGWGLA	aff	0.1245	aff_rescale	0.5287	cle	0.2365	tap	-0.5670	COMB	0.5358	
2	70	ID	Sequence	pep	SSSSSCLHQ	aff		aff_rescale	0.5276	cle	0.0922	tap	0.1380	COMB	0.5483	
3	34	ID	Sequence	pep	CSEYCLCHI	aff	0.1222	aff_rescale	0.5190	cle	0.0455	tap	0.2450	COMB	0.5381	

Fig 3.4.1b:NetCTL-1.2 Server results of Hepatitis B

.

RB	101	LOGI	Ne	tCTL-1	.2 5	Server - predi	ction	re	sults	5				
EN	CE	EQU ANA CBS	Tec	hnical U	nive	rsity of Denmark								
NetC	TL-1	1.2 predi	ctio	ns using M	HC sup	pertype A1. Threshold	0.750000							
1123	ID	Sequence	pep	CTCGSSDLY	aff	0.6305 aff_rescale	2.6770	cle	0.5032	tap	2.7260	COMB	2.8888	<-E
1436	ID	Sequence	pep	STDALMTGF	aff	0.5833 aff_rescale	2.4767	cle	0.8687	tap	2.4370	COMB	2.7288	<-E
2889	ID	Sequence	pep	LSAFSLHSY	aff	0.5416 aff_rescale	2.2996	cle	0.9455	tap	2.9560	COMB	2.5893	<-E
2515	ID	Sequence	pep	HSAKSKFGY	aff	0.5153 aff_rescale	2.1877	cle	0.6886	tap	2.7460	COMB	2.4283	<-E
1988	ID	Sequence	pep	LSDFKTWLK	aff	0.4905 aff_rescale	2.0826	cle	0.9180	tap	0.3800	COMB	2.2393	<-E
301	ID	Sequence	pep	TQDCNCSIY	aff	0.4768 aff_rescale	2.0245	cle	0.6268	tap	2.8130	COMB	2.2592	<-E
1368	ID	Sequence	pep	STTGEIPFY	aff	0.4364 aff_rescale	1.8527	cle	0.9391	tap	2.9680	COMB	2.1420	<-E
1285	ID	Sequence	pep	ITTGSPITY	aff	0.3812 aff_rescale	1.6185	cle	0.9720	tap	2.9000	COMB	1,9093	<-E
2967	ID	Sequence	pep	LSGWFTAGY	aff	0.3664 aff_rescale	1.5555	cle	0.9694	tap	2.6670	COMB	1,8342	<-E
				GSPITYSTY		0.3571 aff_rescale	1.5162	cle	0.9739	tap	2.7810	COMB	1.8013	<-E
2998	ID	Sequence	pep	LLAAGVGIY	aff	0.3569 aff_rescale	1.5153	cle	0.9291	tap	3.0130	COMB	1.8054	<-8
				YTIFKVRMY		0.3515 aff_rescale	1.4923	cle	0.6486	tap	3.0930	COMB	1.7442	<-E
1513	ID	Sequence	pep	DSSVLCECY	aff	0.3202 aff_rescale	1.3595	cle	0.6148	tap	2.5400	COMB	1.5787	<-E
1801	ID	Sequence	pep	LTTGQTLLF	aff	0.3132 aff_rescale	1.3300	cle	0.9095	tap	2.3360	COMB	1.5832	<-E
710	ID	Sequence	pep	ASWAIKWEY	aff	0.3084 aff_rescale	1.3093	cle	0.8723	tap	3.2900	COMB	1.6046	<-E
2400	ID	Sequence	pep	LSDG5WSTV	aff	0.3039 aff_rescale	1.2904	cle	0.9665	tap	0.0440	COMB	1.4376	<-E
				LTDPSHITA		0.3005 aff_rescale	1.2757 0				-0.6930		1.3861	
1875	ID	Sequence	pep	STEDLVNLL	aff	0.3001 aff_rescale	1.2743				0.6970	COMB	1.4488	<-8
2588	ID	Sequence	pep	RVCEKMALY	aff	0.2979 aff_rescale	1.2648	cle	0.8871	tap	3.3630	COMB	1.5660	<-8
1236	ID	Sequence	pep	KSTKVPAAY	aff	0.2905 aff_rescale	1.2335	cle	0.9482	tap	3.0060	COMB	1.5260	<-E
830	ID	Sequence	pep	TLSPYYKRY	aff	0.2705 aff_rescale	1.1483	cle	0.9031	tap	2.9670	COMB	1,4321	<-E
1152	ID	Sequence	pep	LLSPRPISY	aff	0.2641 aff_rescale	1.1213	cle	0.9790	tap	2.9980	COMB	1.4181	<-E
268	ID	Sequence	pep	SATLCSALY	aff	0.2570 aff_rescale	1.0913	cle	0.9656	tap	2.9640	COMB	1.3843	<-E
				ITPRCMVDY		0.2496 aff_rescale	1.0596	cle	0.8226	tap	2.8550	COMB	1.3258	<-E
1101	ID	Sequence	pep	YTNVDQDLV	aff	0.2480 aff_rescale	1.0531	cle	0.3423	tap	0.2150	COMB	1.1152	<-E
826	ID	Sequence	pep	LMALTLSPY	aff	0.2352 aff_rescale	0.9986	cle	0.9236	tap	3.0370	COMB	1.2890	<-E
533	ID	Sequence	pep	DTDVFVLNN	aff	0.2338 aff_rescale	0.9927	cle	0.0473	tap	-1.6880	COMB	0.9154	<-E
1320	ID	Sequence	pep	STDATSILG	aff	0.2247 aff_rescale	0.9541				-1.5630	COMB	0.8830	<-E
1063	ID	Sequence	pep	STATQTFLA	aff	0.2097 aff_rescale	0.8903	cle	0.0458	tap	-0.4400	COMB	0.8752	<-E
732	ID	Sequence	pep	CSCLWMMLL	aff	0.2037 aff_rescale	0.8649	cle	0.2937	tap	1.0100	COMB	0,9595	<-E
				QVRNSSGLY		0.2033 aff_rescale	0.8631				3.0730		1.1614	
2864	ID	Sequence	pep	NCEIYGACY	aff	0.2001 aff_rescale	0.8498	cle	0.8448	tap	2.8860	COMB	1.1208	<-E
695	ID	Sequence	pep	NIVDVQYLY	aff	0.2000 aff_rescale	0.8491	cle	0.9712	tap	3.1190	COMB	1.1507	<-E
				PLAVMGSSY		0.1983 aff_rescale	0.8419				2.5290		1.1065	<-E
2070	ID	Sequence	pep	CTPLPAPNY	aff	0.1964 aff_rescale	0.8339	cle	0.9516	tap	2.7020		1.1118	
940	ID	Sequence	pep	KLGALTGTY	aff	0.1929 aff rescale	0.8190	cle	0.9626	tap	2.8970	COMB	1.1083	<-E

Fig 3.4.1c: NetCTL-1.2 Server results of Hepatitis C

CENTERFO	NetC
CALSEQU ENCEANA LYSIS CBS	Techni

NetCTL-1.2 Server - prediction results

Technical University of Denmark

1	ID	Sequence	pep	MSRSESRKN	aff	0.0555 aff_rescale	0.2358	cle	0.0384	tap	-1.1810	COMB	0.182
2	ID	Sequence	pep	SRSESRKNR	aff	0.0481 aff_rescale	0.2042	cle	0.5666	tap	1.7760	COMB	0.378
3	ID	Sequence	pep	RSESRKNRG	aff	0.0668 aff_rescale	0.2837	cle	0.0378	tap	-1.2010	COMB	0.229
4	ID	Sequence	pep	SESRKNRGG	aff	0.0529 aff_rescale	0.2248	cle	0.0297	tap	-1.3500	COMB	0.161
5	ID	Sequence	pep	ESRKNRGGR	aff	0.0507 aff_rescale	0.2151	cle	0.0560	tap	1.4240	COMB	0.294
6	ID	Sequence	pep	SRKNRGGRE	aff	0.0505 aff_rescale	0.2144	cle	0.0543	tap	-1.4750	COMB	0.148
7	ID	Sequence	pep	RKNRGGRED	aff	0.0529 aff_rescale	0.2247	cle	0.0248	tap	-1.5620	COMB	0.150
8	ID	Sequence	pep	KNRGGREDI	aff	0.0494 aff rescale	0.2096	cle	0.2594	tap	0.6700	COMB	0.282
9	ID	Sequence	pep	NRGGREDIL	aff	0.0513 aff_rescale	0.2178	cle	0.4041	tap	1.1360	COMB	0.335
0	ID	Sequence	pep	RGGREDILE	aff	0.0552 aff_rescale	0.2345	cle	0.0233	tap	-1.6100	COMB	0.157
1	ID	Sequence	pep	GGREDILEQ	aff	0.0475 aff_rescale	0.2019	cle	0.0654	tap	-0.3700	COMB	0.193
2	ID	Sequence	pep	GREDILEQW	aff	0.0446 aff_rescale	0.1892	cle	0.9365	tap	0.7380	COMB	0.366
з	ID	Sequence	pep	REDILEQWV	aff	0.0577 aff_rescale	0.2449	cle	0.5459	tap	0.2170	COMB	0.337
4	ID	Sequence	pep	EDILEQWVS	aff	0.0522 aff rescale	0.2218	cle	0.0337	tap	-2.5560	COMB	0.099
5	ID	Sequence	pep	DILEQWVSG	aff	0.0547 aff_rescale	0.2324	cle	0.2462	tap	-1.7320	COMB	0.182
6	ID	Sequence	pep	ILEQWVSGR	aff	0.0626 aff_rescale	0.2656	cle	0.8723	tap	1.2440	COMB	0.458
7	ID	Sequence	pep	LEQWVSGRK	aff	0.0649 aff_rescale	0.2756	cle	0.9323	tap	0.3100	COMB	0.430
8	ID	Sequence	pep	EQWVSGRKR	aff	0.0499 aff_rescale	0.2117	cle	0.5458	tap	1.5760	COMB	0.372
9	ID	Sequence	pep	QWVSGRKRL	aff	0.0509 aff_rescale	0.2160	cle	0.9351	tap	1.1250	COMB	0.412
0	ID	Sequence	pep	WVSGRKRLE	aff	0.0543 aff_rescale	0.2308	cle	0.0246	tap	-1.5070	COMB	0.159
1	ID	Sequence	pep	VSGRKRLEE	aff	0.0654 aff_rescale	0.2777	cle	0.0259	tap	-1.6820	COMB	0.197
2	ID	Sequence	pep	SGRKRLEEL	aff	0.0552 aff rescale	0.2346	cle	0.9283	tap	0.8370	COMB	0.415
13	ID	Sequence	pep	GRKRLEELE	aff	0.0451 aff_rescale	0.1915	cle	0.0229	tap	-1.4860	COMB	0.120
4	ID	Sequence	pep	RKRLEELEX	aff	0.0543 aff_rescale	0.2304	cle	0.2200	tap	0.3270	COMB	0.279
5	ID	Sequence	pep	KRLEELEXD	aff	0.0517 aff_rescale	0.2197	cle	0.0349	tap	-1.3520	COMB	0.157
6	ID	Sequence	pep	RLEELEXDL	aff	0.0657 aff_rescale	0.2791	cle	0.7337	tap	1.1750	COMB	0.447
17	ID	Sequence	pep	LEELEXDLR	aff	0.0561 aff_rescale	0.2383	cle	0.0455	tap	1.3410	COMB	0.312
8	ID	Sequence	pep	EELEXDLRK	aff	0.0589 aff rescale	0.2502	cle	0.5869	tap	0.1910	COMB	0.347
19	ID	Sequence	pep	ELEXDLRKV	aff	0.0581 aff_rescale	0.2466	cle	0.5310	tap	-0.1810	COMB	0.317
0	ID	Sequence	pep	LEXDLRKVK	aff	0.0478 aff rescale	0.2028	cle	0.2014	tap	0.1730	COMB	0.241
11	ID	Sequence	pep	EXDLRKVKK	aff	0.0587 aff_rescale	0.2494	cle	0.8738	tap	0.1500	COMB	0.388
12	ID	Sequence	pep	XDLRKVKKK	aff	0.0516 aff_rescale	0.2190	cle	0.5549	tap	-0.0290	COMB	0.300
13	ID	Sequence	pep	DLRKVKKKI	aff	0.0516 aff_rescale	0.2193	cle	0.8899	tap	0.2850	COMB	0.367
				LRKVKKKIK		0.0439 aff_rescale			0.7523		0.5340	COMB	0.326
35	ID	Sequence	pep	RKVKKKIKK	aff	0.0579 aff_rescale	0.2457	cle	0.8355	tap	0.8840	COMB	0.415
16	ID	Sequence	pep	KVKKKIKKL	aff	0.0510 aff rescale	0.2165	cle	0.9646	tap	1.3300	COMB	0.427

Fig 3.4.1d :NetCTL-1.2 Server results of Hepatitis D

RB CA EN	LS	EQU					r - predi f Denmark		re	sults	5				
NetC	TL-	1.2 predi	ctio	ns using M	HC sup	pertype /	1. Threshold	0.750000	9						
369	ID	Sequence	pep	LTAVITAAY	aff	0.7106	aff_rescale	3.0172	cle	0.5935	tap	3.0780	COMB	3.2601	<-E
645	ID	Sequence	pep	VTAFCSALY	aff	0.6694	aff_rescale	2.8420	cle	0.7767	tap	2.8150	COMB	3.0993	<-E
1653	ID	Sequence	pep	CVDVVSQVY	aff	0.6015	aff_rescale	2.5539	cle	0.9724	tap	2.8930	COMB	2.8444	<-E
				ATGPHSLSY			aff_rescale			0.9783		2.9200		2.6957	
				AAETGIALY			aff_rescale			0.9766		2.8720		2.3145	
				HSLIGGLWY			aff_rescale			0.8380		3.0240		2.1329	
				TTSDSVLTF			aff_rescale			0.9737		2.5360		2.1109	
				VLSTLVGRY			aff_rescale			0.9516		3.1560		2.0876	
				LTDIVHCRM			aff_rescale			0.9725		-0.0560		1.8163	
				ATVSISGSY			aff_rescale			0.9622		2.9580		1.9539	
				NMAVIAHCY			aff_rescale			0.9655		3.0440		1.9468	
				HVEPGVVHY			aff_rescale			0.9786		2.8210		1.9205	
				MTYLRGISY			aff_rescale			0.9593		3.1850		1.8938	
				ISDAIVNNF			aff_rescale			0.9445		2.3920		1.7769	
				YLTICHQRY			aff_rescale			0.9701		3.0420		1.6722	
				QTEILINLM			aff_rescale			0.7109		0.2000		1.3834	
				HLDPRVLVF			aff_rescale			0.9609		2.1820		1.5045	
				HTTSYLLIH			aff_rescale			0.1019		-0.7360		0.9623	
				LTEPAIAWE			aff_rescale			0.9541		2.3210		1.2149	
				FTETTIIAT			aff_rescale			0.0424		-0.9560		0.8638	
				IMNDGFAAY			aff_rescale			0.9787		2.8700		1.1843	
				TTCELYELV RTANLALEL			aff_rescale aff rescale			0.1705		0.3280		0.8979	
							aff_rescale								
				SSAGYNHDV TSDSVLTFE			aff_rescale			0.6694		0.2860		0.9628	4-E
				FVDGAQLEA			aff_rescale			0.8012		-0.6210		0.8132	
				ITRLYSWLF			aff rescale			0.9691		2,4800		0.9785	
				DSVVLCSDY			aff_rescale			0.9591		2.5880		0.9796	
				CSRRGTAAY			aff rescale			0.8648		2.9830		0.9745	
				ESDCTWLVN			aff_rescale			0.0817		-1.7600		0.6108	- E
				LTSSIIYRM			aff_rescale			0.9721		0.1440		0.7918	2.F
				VSDADNRLT			aff rescale			0.0268		-0.9460		0.5886	
				ASEDALTAV			aff_rescale			0.5054		0.4960		0.3880	
				FCCSRLMTY			aff_rescale			0.3242		3.0130		0.8146	4.E
				WSKTFCALF			aff rescale			0.3204		2.7000		0.7944	
				QTASRVLRS			aff_rescale			0.1023		-2.2280		0.4972	
1113	10	sequence	pep	QUASHALKS	arr	0.1397	arr_rescare	0.3932	cie	0.1025	tap	-2.2200	COMB	0.4972	-

Fig 3.4.1e :NetCTL-1.2 Server results of Hepatitis E

2.4.2. IMMUNE EPITOPE DATABASE AND ANALYSIS RESOURCE

(IEDB):

Here, the amino acid sequences of Hepatitis viruses are taken and the identification of Epitopes are done. The results are displayed below. (Figure: 3.4.2)

nding Filters	Current F	II(ers: X Epitope Structure: L	inear Sequence 🗙 Linear Sequence: HTSDHM	ISIY X Blast Option: 70% X	No T cell	assays 🗙 No B cell assays 🗙	Host: Homo say	piens (human) j	
Reset Search		Epitopes (2)	Antigens (2)	Assays (6)		Receptors (0)		References (5)	·]
bitope (?)				Go To Records Starting At	00 0				port Results C
Any Epitopes	2 Records	Found		R R Page 1 of 1	> >1			25	• Per Page
Discontinuous Epitopes	Details •	✓ Epitope	✓ Antigen		✓ Org	anism	~	# References 🗸	# Assays 🗸
) Non-peptidic Epitopes	541575	DSDHLTIYNAY	ATP-dependent RN (UniProt:Q7Z478)	A helicase DHX29	K Horr	o sapiens (human)	7 4	4	5
3D structure available ino Acid Modification	563853	HTAGHMSYF	Hydroxyacylglutath (UniProt:H3BT20)	ione hydrolase-like protein	K Hom	io sapiens (human)	¥.	1	1
	2 Records	Found		B B Page 1 of 1				25	Per Page
				Go To Records Starting At 12	00	2		Exp	port Results 🕻
untigen ()				Go To Records Starting At 12	00 (2		Exp	port Results 🕻
Antigen () Organism				Go To Records Starting At 12	00 (Exp	port Results 🕻
				Go To Records Starting At	00 (2		Exp	port Results C
Organism				Go To Records Starting At 12	00 🧯	9		Exi	port Results 🕻
Drganism Ex: influenza, peanut				Go To Records Starting At	00 (۵		Ex	port Results 🕻
Organism Ex: influenza, peanut Antigen Name				Go To Records Starting At	00 (٥		Ex	port Results 🕻
Organism Ex: Influenza, peanut Antigen Name Ex: core, capsid, myosin Execeptor ()				Go To Records Starting At 12	00 (٥		Ex	port Results 🕻
Organism Ex: influenza, peanut Antigen Name Ex: core, capsid, myosin				Go To Records Starting At 12	00 (٥		Ex	port Results C
Organism Ex: Influenza, peanut Antigen Name Ex: core, capsid, myosin teceptor () Has receptor sequence				Go To Records Starting At 12	00 (٥		Ex	port Results 🕻

Fig 3.4.2a: IEDB results of Hepatitis A

nding Filters	Guiterit	Epitope structure. Linear sequence	inear	Sequence SLDVSAAFY 🗶 Blast Option: 70% 🗶 N	101	cell assays K No B cell assays K H	ist. Homo	sapiens (numan)	
eset Search		Epitopes Anti	gens 4)	Assays (46)		Receptors (0)		Reference (13)	
itope ()				Go To Records Starting At 1200	10			E	port Results
Any Epitopes	8 Records	Found							Per Page
) Linear Epitope	Details		~			Organism		# References v	
Discontinuous Epitopes	428802	YTLDVPDAFYY	W.	Syntaxin-binding protein 3		Homo sapiens (human)		6 5	E
Non-peptidic Epitopes	39474	LSLDVSAAFY		Protein P		Hepatitis B virus		• 0 • 2	4
3D structure available	61242	SSNLSWLSLDVSAAF		Protein P		Hepatitis B virus		6 2	27
nino Acid Modification	545236	SLDVSAPKV				Homo sapiens (human)		6 2	2
	190480	LSLDVSAAF				Hepatitis B virus		6 1	4
tigen (?)	471715	TLDVPDAFY	7.	Syntaxin-binding protein 3	4	Homo sapiens (human)	5	6 1	1
	547000	MLYAGAPTTVQSHPGSASLEVPAAFGKVEEGPR	7.	Other Toxoplasma gondii protein	4	Toxoplasma gondii	1	6 1	2
rganism	840760	YTLDVPDAFY	¥,	Syntaxin-binding protein 3	4	Homo sapiens (human)	3	6 1	1
Ex: influenza, peanut	8 Records	Found		IS S Page 1 of 1				25	Per Page
Ex: core, capsid, myosin				Go To Records Starting At 1200	0	0		Ex	port Results
Ex: core, capsid, myosin				GO TO RECORD Stating AL	NV.	U			pon results
ceptor 🕐									
Has receptor sequence									
pe Any Type 🔹									

Fig 3.4.2b: IEDB results of Hepatitis B

anding Filters Reset Search		Epitopes	Antigens	Ass	says	Receptors	Reference	es
Epitope 🕑 👔		(8)	(1)		10)	(0)	(6)	
O Any Epitopes				Go To Records S				xport Results (
Linear Epitope	8 Records			IS S Page			25	
O Discontinuous Epitopes	100000000	 Epitope 	*	Antigen	*	Organism	✓ # References	# Assays
O Non-peptidic Epitopes	7116	CTCGSSDLY	¥.	Genome polyprotein	¥.	Hepatitis C virus	% 3	3
	7117	CTCGSSDLYLVTRHA	7.	Genome polyprotein	7.	Hepatitis C virus	V ₀ 1	1
3D structure available	50961	QGSRSLTPCTCGSSD	7.	Genome polyprotein	7.	Hepatitis C virus	V . 1	1
Amino Acid Modification	59517	SLTPCTCGSSDLYLV	74	Genome polyprotein	74	Hepatitis C virus	V 1	1
	65523	TPCTCGSSDLY	7.	Genome polyprotein	74	Hepatitis C virus	V 4 1	1
Antigen 🕐	175109	AKSLEPCTCGSADLYLITRD	7.	Genome polyprotein	7.	Hepatitis C virus	V 1	1
	175287	PAPPGAKSLEPCTCGSADLY	7.	Genome polyprotein	Υ.	Hepatitis C virus	V 4 1	1
Organism	175290	PCTCGSADLYLITRDADVIP	7.	Genome polyprotein	74	Hepatitis C virus	V 1	1
Ex: influenza, peanut	8 Records	Found		annu ann Millian I			25	Per Pag
Antigen Name	O NOCOTUS	Touria						
Ex: core, capsid, myosin				Go To Records S	Starting At 1200	60		xport Results C

inding Filters	Current F	Titors: 🗙 Epitope Structure: Linear Sequ	Jence 🗶 Linear	Sequence MSRS	ESRKN Blast Option: 7	7% 🗙 N	lo T cell assays 🛛 🗙 No B cell assays 🛛 🗶	Host: Homo s	apiens (human)	
Reset Search		Epitopes (2)	Antigens (2)		Assays (9)		Receptors (0)		Reference: (2)	5
pitope (?)		(6)	(2)		Go To Records Startin			ý.		port Results C
Any Epitopes	2 Records	Found					150			Per Page
Linear Epitope		Epitope	~	Antigen	ter ter i ugo j		Organism	~	# References v	
Discontinuous Epitopes	873087	MSRSESKKNRGGREEILEQW		Large delta anti	en		Hepatitis delta virus	Υ.		8
3D structure available	889851	EGGGLMTRSESL			uitin-protein ligase HERC1		Homo sapiens (human)	Y.		1
mino Acid Modification	2 Records	Found			IG KI Page 1	of 1 D			25	Per Page
					Go To Records Startin	At 1200			Ex	port Results
Organism Ex: influenza, peanut Antigen Name Ex: core, capsid, myosin										
Has receptor sequence ype Any Type •										

inding Filters	Current	Fillers: 🗶 Epitope Structure: Lin	ar Sequence 🛛 🗙 Linear	Sequence: CVDVVSQVY X Blast Option: 70%	×N	o T cell assays 🗙 No B cell assays 🗶 H	lost: Homo sa	apiens (human)	
Reset Search		Epitopes (6)	Antigens (4)	Assays (18)		Receptors (0)		Reference: (9)	9
Epitope 🕐 👔 👔		(6)	(9)	Go To Records Starting At	4200				port Results
O Any Epitopes	6 Records	Found		Records starting At				25	Per Par
Linear Epitope		 Epitope 		Antigen		Organism		# References v	1100
O Discontinuous Epitopes	469095	and the second second							
Non-peptidic Epitopes	409095	NSDVVEQIY		Unconventional myosin-X		Homo sapiens (human)	7.		7
	876726	ALTDIVSQV		Serine/threonine-protein kinase PAK 6		Homo sapiens (human)	7.		5
3D structure available	Contraction of the	DVVEQIYKR		Unconventional myosin-X		Homo sapiens (human)	7.		3
Amino Acid Modification	706932	FVDIVSQDNF		Protein AAR2 homolog (UniProt Q9Y312)		Homo sapiens (human)	¥.		1
	711731	IVDVASQV		mRNA-decapping enzyme 1B (UniProt:Q8IZD4)		Homo sapiens (human)	Y.		1
Antigen (?)	955858	TDIVSQVRL	¥.	Serine/threonine-protein kinase PAK 6	¥.	Homo sapiens (human)	Y.	1	1
Organism	6 Records	s Found		K R Page 1 of 1				25	• Per Pag
Ex: influenza, peanut				Go To Records Starting At	1200			Ex	port Results
Antigen Name									
Ex: core, capsid, myosin									
Receptor (?)									
70									
Has receptor sequence									
Type Any Type 🔹									

Fig 3.4.2e: IEDB results of Hepatitis E

PREDICTION OF B-CELL EPITOPE

3.5.1. Antibody epitope prediction:

Here, the amino acid sequences of Hepatitis viruses are taken and the identification of B cell Epitopes are done. The results are displayed below. (Figure: 3.5.1)

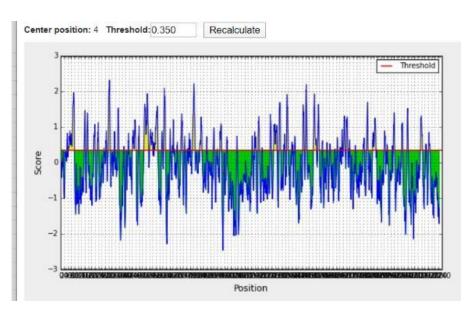
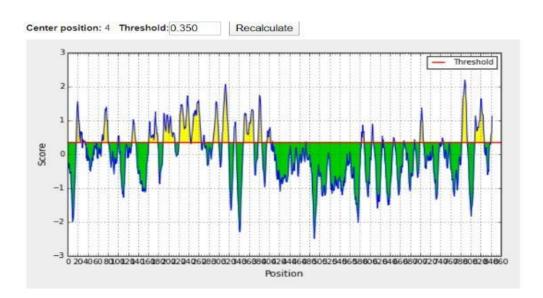
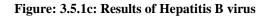




Figure: 3.5.1a Results of Hepatitis A virus

Predicted peptides:								
No. 🗢	Start ≑	End 🔶	Peptide \$	Length 🔺				
2	45	79	FTSVDQSSVHTAEVGSHQVEPLRTSVDKPGSKRTQ	35				
16	489	516	TTQVGDDSGGFSTTVSTEQNVPDPQVGI 28					
14	421	442	ISDTPYRVNRYTKSAHQKGEYT	22				
19	550	571	VLAKKVPETFPELKPGESRHTS	22				
17	521	541	DLKGKANRGKMDVSGVQAPVG	21				
47	1252	1272	GVEPEKNIYTKPVASDYWDGY					
74	1834	1853	TGAPGIDAINMDSSPGFPYV	20				
57	1486	1503	HKEEEPIPTEGVYHGVTK	18				
34	774	790	DLESSVDDPRSEEDKRF	17				
35	817	830	EELSNEVLPPPRKM	14				

Figure: 3.5.1b Results of Hepatitis A virus

Predic	ted pe	ptides	:	
No. 🔶	Start 🔶	End 🗢	Peptide 🔶	Length 🔺
7	190	213	KRHGDKSFCPQSPGILPRSSVGPC	24
8	222	244	RLGPQPAQRQLAGRQQGGSGSIR	23
14	349	369	WGPCTEHGEHRIRTPRTPARV	21
9	246	265	RVHPSPWGTVGVEPSGSGHI	20
30	809	827	TTGRTSLYADSPSVPSHLP	19
6	161	178	ESTRSASFCGSPYSWEQD	18
3	68	80	PCFNPKWQTPSFP	13
12	307	319	FPPNSSRSQSQGP	13
1	17	28	EAGPLEEELPRL	12
11	289	300	ISTSQGHSSSGH	12
29	783	793	ALNPADDPSRG	11
16	395	403	FSRGNTRVS	9
5	128	135	GIKPYYPE	8
15	379	385	NPHNTTE	7
	700	700		-

Figure: 3.5.1d: Results of Hepatitis B virus

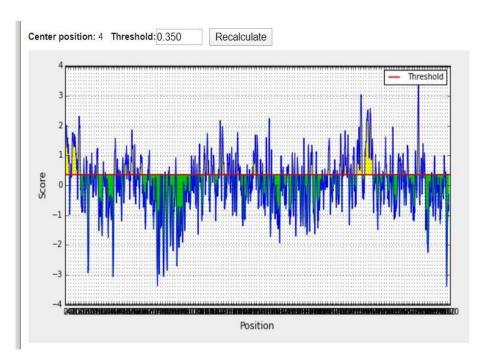


Figure: 3.5.1e: Results of Hepatitis C virus

No. 🔷	Start 🔶	End 🔶	Peptide 🔶	Length 🔺
98	2351	2415	SFGSSSTSGITGDNTTTSSEPAPSGCPPDSDVESYSSMPPLEGEPGDPDLSDGSWSTVSSGADTE	65
3	49	92	TRKTSERSQPRGRRQPIPKARRPEGRTWAQPGYPWPLYGNEGCG	44
97	2288	2330	WARPDYNPPLVETWKKPDYEPPVVHGCPLPPPRSPPVPPPRKK	43
1	1	30	MSTNPKPQRKTKRNTNRRPQDVKFPGGGQI	30
92	2188	2212	RRLARGSPPSMASSSASQLSAPSLK	25
61	1475	1497	TTLPQDAVSRTQRRGRTGRGKPG	23
21	513	534	PVVVGTTDRSGAPTYSWGANDT	22
4	100	117	PRGSRPSWGPTDPRRRSR	18
25	586	603	FRKHPEATYSRCGSGPWI	18
18	467	483	QGWGPISYANGSGLDER	17
46	1230	1246	APTGSGKSTKVPAAYAA	17
78	1926	1942	GNHVSPTHYVPESDAAA	17
82	2061	2077	PINAYTTGPCTPLPAPN	17
89	2154	2169	YPVGSQLPCEPEPDVA	16
102	2509	2524	CSLTPPHSAKSKFGYG	16
113	2764	2779	TRYSAPPGDPPQPEYD	16
45	1208	1222	PVFTDNSSPPAVPQS	15

Figure:	3.5.1f:	Results	of Hepatitis	C virus
----------------	---------	---------	--------------	---------

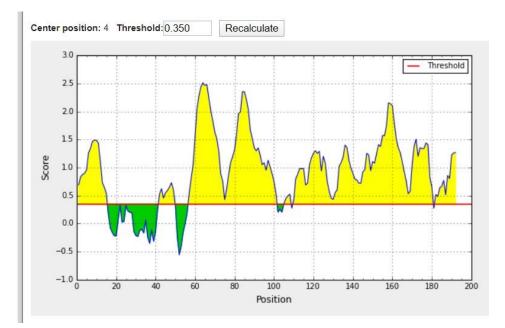


Figure: 3.5.1g: Results of Hepatitis D virus

Predic	ted pe	Predicted peptides:								
No. \$	Start 🗢	End 🜩	Peptide 🔶	Length 🔺						
5	110	180	KKQLTSGGKNLSKEEEELGRLTKEDEERKRRVAGPRVGDVNPFEGGSRGAPGGGFVPNMQGVPESPFTRT	71						
3	57	101	GKKDKDGEGAPPAKRARTDRMEVDSGPGKRPSRGGFTEQERRDHR	45						
1	1	15	MSRSESRKNRGGRED	15						
2	42	49	KLEEDPWL	8						
4	105	108	ALEN	4						

Figure: 3.5.1h: Results of Hepatitis D virus

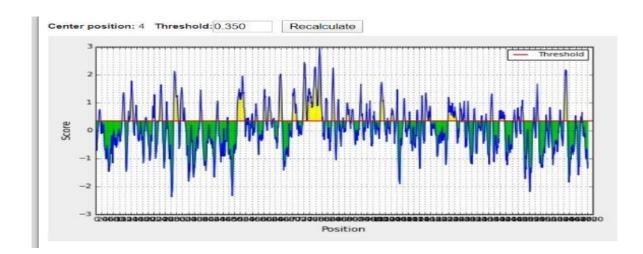


Figure: 3.5.1i: Results of Hepatitis E virus

No. 🔷	Start 🔶	End 🗢	Peptide 🔶	Length 🔺
28	717	786	LEPCNQDPPPSVNIDLPVNTPSSVTPVQTQAPALEQVAPPSDLPDGGAGPMLGAPIPPPTPPQSITRLSE	70
50	1220	1249	QVGQHRPSVIPRGTIDNNVDTLDAFPPSCQ	30
17	490	516	GRVGEQGYDNEAFEGSDVDPAEEATVS	27
59	1397	1416	NKFTTGETIAHGKVGQGISA	20
11	270	286	APEPSPMPYVPYPRSTE	17
26	681	696	PFSPGHSWESANPFCG	16
5	116	130	QRWYTAPTRGPAANC	15
40	985	999	AGVPGSGKSRSIQQG	15
25	633	645	PPGVATPSAPGEV	13
36	913	925	WERNHRPGDELYL	13
69	1621	1633	SEKNWGPGPERAE	13
23	596	607	PAKQTMATGPHS	12
48	1141	1152	AKAANPGAITVH	12
9	220	230	TYEGDSSAGYN	11
12	293	303	FGPGGSPSLFP	11
33	868	878	DYRVEHNPKRL	11

Figure: 3.5.1j: Results of Hepatitis E virus

ALLERGENCITY PREDICTION

Allertop V 2.0:

With the help of this tool, the allergenicity prediction of various sequences was done. The epitope sequence of various Hepatitis Viruses was uploaded in the Allertop V 2.0 and the results are displayed below.

S.no	Virus	Epitopes	Nature
1.	HEPATITIS A	HTSDHMSIY	Probable Allergen
2.	HEPATITIS B	SLDVSAAFY	Probable Non- allergen
3.	HEPATITIS C	CTCGSSDLY	Probable Allergen
4.	HEPATITIS D	MSRSESRKN	Probable Non- allergen
5.	HEPATITIS E	CVDVVSQVY	Probable Allergen

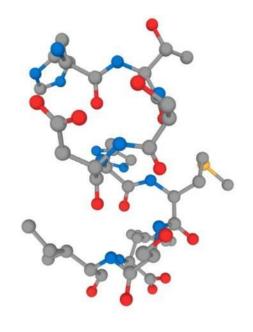
Table 3.6.1: Determination of Allergenicity for Epitope sequences of Hepatitis virus using Allertop 2.0

AllergenFP v.1.0:

With the help of this tool, the allergenicity prediction of various sequences was done. The epitope sequences of various Hepatitis Virus was uploaded and the results are displayed below.

S.no	Virus	Epitopes	Result
1.	HEPATITIS A	HTSDHMSIY	Probable Allergen

2.	HEPATITIS B	SLDVSAAFY	Probable allergen	Non-
3.	HEPATITIS C	CTCGSSDLY	Probable allergen	Non-
4.	HEPATITIS D	MSRSESRKN	Probable Allergen	
5.	HEPATITIS E	CVDVVSQVY	Probable Allergen	


Table 3.6.2: Determination of Allergenicity for Epitope sequences of Hepatitis virus using Allergen

3D MODELLING OF AN EPITOPE

PEP FOLD:

Using the PEP-FOLD analysis, the structure of various amino acid sequences were predicted. Here, the amino acid sequences are uploaded and the results are displayed below. (figure: 3.7.1)

The sequence HTSDHMSIY of Hepatitis A virus displayed the following results:

Input style

Cartoon
 Balls & Sticks

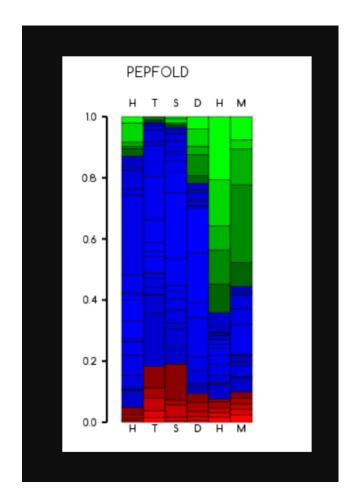
Lines
Line Trace

Smooth Line Trace

Trace

Color by

Chain
 Uniform
 Rainbow


Model

Model 1 V

Information

Selected Bookmark this page

Fig 3.7.1a: result of HTSDHMSIY of Hepatitis A

Fig 3.7.1b: result of HTSDHMSIY of Hepatitis A

The sequence SLDVSAAFY of Hepatitis B virus displayed the following results:

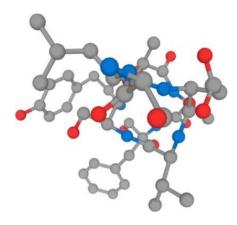
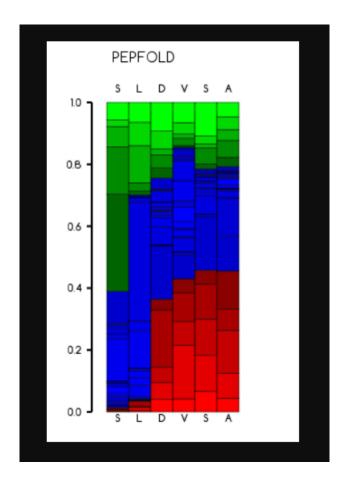



Fig 3.7.1c: result of SLDVSAAFY of Hepatitis B

The sequence CTCGSSDLY of Hepatitis C virus displayed the following results:

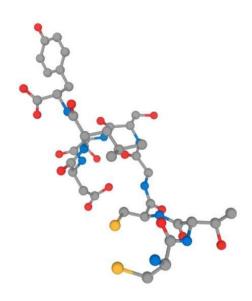
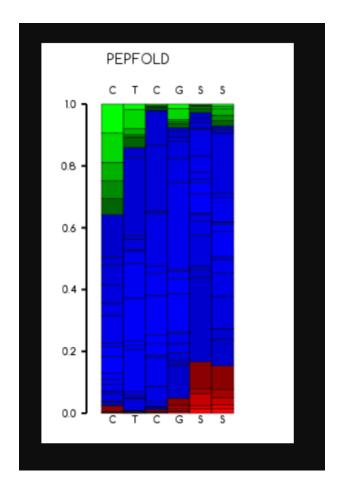



Fig 3.7.1e: result of CTCGSSDLY of Hepatitis C

Fig 3.7.1f: result of CTCGSSDLY of Hepatitis C

The sequence MSRSESRKN of Hepatitis D virus displayed the following results:

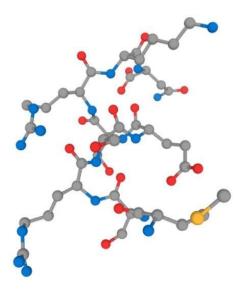
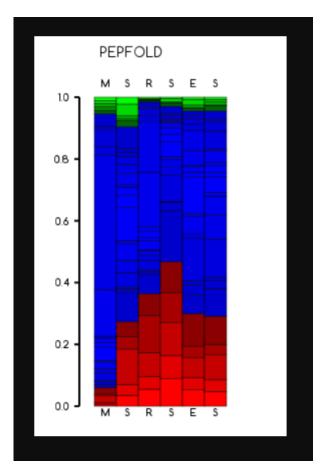



FIG 3.7.1g: Result of MSRSESRKN of Hepatitis D

The sequence CVDVVSQVY of Hepatitis E displayed the following results:

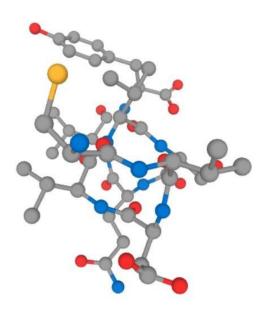
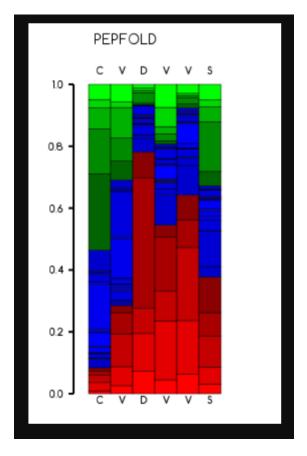



FIG 3.7.1i: result of CVDVVSQVY of Hepatitis E

PHYRE2:

Using the PHYRE2 analysis, the structure of various amino acid sequences were predicted. Here, the amino acid sequences are uploaded and the results are displayed below. (figure: 3.7.1)

The amino acid sequence of Hepatitis A virus displayed the following results:

Summary				Ten model
		Model (left) based	on template c4egg/	Top model
		Houer (left) based	on template <u>caeqqA</u>	Top template information
		lipoprotein;	olecule:putative ho	st cell surface-exposed
		Download PDB file of final model. , a superinfection exclusion protein fi pphilus temperate phage tp-j34		
				Confidence and coverage
		Confidence:	23.5%	Coverage: 34%
	Image coloured by rainbow N \rightarrow C terminus Model dimensions (Å): X:21.065 Y:17.529 Z:15.159	You may wish to s automatically scan templates as they Please note: You n Phyrealarm. 3D viewing Interactive 3D view For other options t	a your sequence even appear in the Phyre must be registered a w in JSmol	e to <u>Phyrealarm</u> . This will ry week for new potential 2 library.
		EAQ		
Sequence analysis				
	View PSI-Blast Pseudo-Mu	ultiple Sequence Alignmen	TEASTA version	
Secondary structure and disorde	r prediction [Show]			

Figure: 3.7.2a: Results of Hepatitis A virus

The amino acid sequence of Hepatitis B virus displayed the following results:

Summary		
	Top model Model (left) based on template <u>d1ggta</u> Top template information Download PDB file of final model Famuy:rreparus is viral capsid (hbcag) Famuy:rreparus is viral capsid (hbcag) Confidence and coverage Confidence: 72.9% Coverage:34%	
	15 residues (34% of your sequence) have been modelled with 72.9% confidence by the single highest scoring template.	
	Image coloured by rainbow N → C terminus Eterminus Image coloured by rainbow N → C terminus For other options to view your downloaded structure offline see the	
Sequence analysis	Model dimensions (Å): X:13.154 Y:34.425 Z:15.854 FAQ	

Figure: 3.7.2b: Results of Hepatitis B virus

The amino acid sequence of Hepatitis C virus displayed the following results:

Summary	Top model
	Model (left) based on template <u>cloveA</u> Download PDB file of final model. Charm A. r Co Protecule:hepatitis c virus capsid protein; PDBTitle: solution structure of the hepatitis c virus n-terminal2 capsid protein 2-45 [c-hcv(2-45)] Confidence: 100.0% Confidence: 100.0% Confidence and coverage: Confidence: 100.0% Confidence by the single highest scoring template. Warning: 66% of your sequence is predicted disordered. Disordered regions cannot be maningfully predicted. IBD viewing Interviewing For other options to view your downloaded structure offline see the FAQ by rainbow N C terminus \$x:61.332 Y:21.092 Z:24.180
Sequence analysis	
	View PSI-Blast Pseudo-Multiple Sequence Alignment <u> <u> Download</u> <u> FASTA version</u> </u>
Secondary structure and disorder prediction [Show]	
Domain analysis [Show]	

Figure: 3.7.2c: Results of Hepatitis C virus

The amino acid sequence of Hepatitis D virus displayed the following results:

Summary	
	Top model
Sequence analysis	Model (left) based on template <u>cla928</u>
	View PSI-Blast Pseudo-Multiple Sequence Alignment Download FASTA version
e	

Figure: 3.7.2d: Results of Hepatitis D virus

The amino acid sequence of Hepatitis E virus displayed the following results:

	Fold:TIM beta/alpha-barrel Superfamily:Aldolase Download PDB file of final model. Confidence and coverage Confidence: 9.3% Coverage: 52%
2	21 residues (52% of your sequence) have been modelled with 9.3% confidence by the single highest scoring template.
0	automatically scan your sequence every week for new potential templates as they appear in the Phyre2 library. Please note: You must be registered and logged in to use Phyrealarm. SD viewing Interactive 3D view in JSmol
Image coloured by rainbow N → C terminus	For other options to view your downloaded structure offline see the

Figure: 3.7.2e: Results of Hepatitis E virus

The peptide sequence of Hepatitis C Virus displayed the following results:

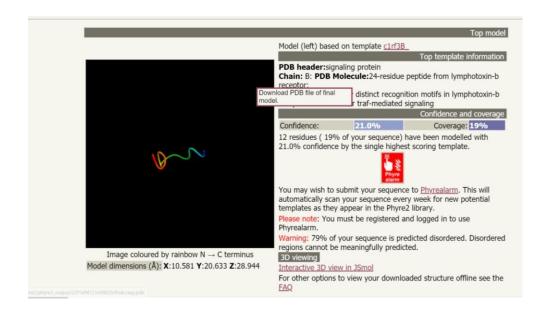


Figure: 3.7.2 f: Results of Hepatitis C virus

The peptide sequence of Hepatitis C Virus displayed the following results:

		Madel (left) hass	d on tomolato of opiA	Top mode
		Model (left) base	d on template <u>c1oeiA</u>	Top template information
		PDB header:prion protein Chain: A: PDB Molecule:major prion protein; PDBTitle: human prion protein 61-84		
	100000	Confidence and coverage		
	\sim	Confidence:	26.1%	Coverage: 25%
			% of your sequence) I e by the single highes	have been modelled with st scoring template.
			Phyre	
		automatically sca		e to <u>Phyrealarm</u> . This will ry week for new potential 2 library.
			must be registered a	
			f your sequence is pre e meaningfully predic	edicted disordered. Disordered ted.
	Image coloured by rainbow $N \rightarrow C$ terminus	3D viewing		
	Model dimensions (Å): X:14.974 Y:16.473 Z:17.366	Interactive 3D vie		
	Proven dimensionis (A): A:14.9/4 T:10.4/3 L:17.300	For other options EAQ	to view your downlo	aded structure offline see the
quence analysis				
	View PSI-Blast Pseudo-Me	ultiple Sequence Alignme	ent <u>Download</u> FASTA version	

Figure: 3.7.2 g: Results of Hepatitis C virus

The peptide sequence of Hepatitis D Virus displayed the following results:

Figure: 3.7.2 h: Results of Hepatitis D virus

The peptide sequence of Hepatitis E Virus displayed the following results:

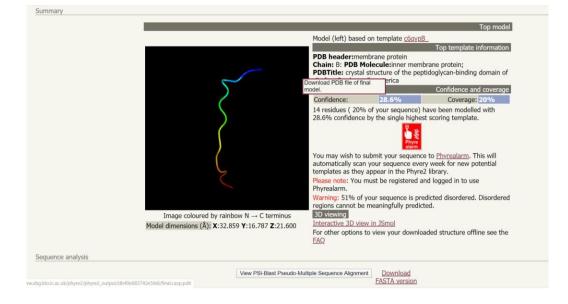


Figure: 3.7.2 i: Results of Hepatitis E virus

Chapter 4 CONCLUSION

The overall intention of this study is to find out a novel epitope as an antigenic determinant against Hepatitis Virus. Upon the infection of the virus, the virus produces nucleocapsid proteins, which tend to play a significant role in number of processes including viral attachment, membrane fusion, and entry into the host cell. The host cell generates viral neutralizing antibodies and cytotoxic T cells in response to the viral infection as a part of immunogenic activity. The principal target for the neutralizing antibodies is the nucleocapsid protein for the abruption of Hepatitis virus infection. It has been shown that the defense against Hepatitis infection in human system is mostly antibody dependent, and virus- neutralizing antibodies are sufficient to impart

protection. The peptides present on Hepatitis envelope proteins are able to propose the specific antigenic determinants which are capable enough to induce Hepatitis neutralizing antibodies.

The B-cell and T-cell epitopes on Hepatitis nucleocapsid protein can prove to be an important tool for the protection against virus infection. The small peptidic epitopes can be used to derive the peptide vaccines, which if used strategically and sensibly can be used to induce immune reaction in human systems. Recently, the concept of peptide vaccines has gained considerable attention as a possible means for treating infectious diseases by promoting the patient's individual immune system. Even the study has shown that the whole protein is not necessary for raising the immune response in the immune reaction to the protein antigen development but short division of protein or the epitopes were sufficient for eliciting the preferred immune response.

Development of in silico tools and techniques has intensively mobilized the process of vaccine development in the current era and is frequently implemented to minimize the time required for the identification of the candidate peptide as a vaccine and analyzing the structure and fuctional relationship of virus protein at molecular level.

Hepatitis is a severe viral infection of the liver. Movement towards the techniques which can enhance the research methodology against Hepatitis and computational approaches are the most demanding in the field od science which can help in the development of vaccines against Hepatitis. In the current study, we have theorized that a successful immunization strategy

against Hepatitis infection apart from conventional vaccines, could also involve the concept of peptide vaccines.

The three dimensional structure of various proteins are known with the help of various softwares. We modeled the 3D structures of various Epitopes of the Hepatitis virus, using the established homology modelling techniques in the PEP FOLD and PHYRE2.0 software. The B-cell epitopes were successfully mapped using Antibody Epitope Prediction software, and the predicted epitopes were carefully documented. Furthermore, as our knowledge of the immune responses to a protein antigen has progressed epitope identification. The T-cell epitopes were mapped using NETCTL and Immune Epitope Database and Analysis Resource (IEDB) softwares, and the predicted epitopes were identified as HTSDHMSIY, SLDVSAAFY, CTCGSSDLY, MSRSESRKN,

CVDVVSQVY. Further, Vaxijen analysis software was used to to predict the segments from a protein sequence that are likely to be antigenic by eliciting an antibody response. Further, the allergenicity of the predicted epitope was identified using Allertop 2.0, AllergenFP v1.0. The predicted epitopes are modelled using the PEPFOLD and PHYRE2.0 softwares.

Design and development of short peptides as vaccine candidate for Hepatitis has gained momentum in the recent years. In conclusion, in the present study we have predicted the epitope like region, responsible for imparting an immune response. The information of immune response to a protein antigen progresses cell epitope recognition and has proved to be a challenging immune-informatics problem in vaccine design. Henceforth, the current study could prove to be useful in designing candidates capable of producing antipeptide antibodies which are component of recognising Hepatitis specific nucleocapsid protein.

Further Recommendations

- ➢ Identifying the epitopes for each Hepatitis virus.
- ➢ Docking the identified epitopes with T-cell antigen.
- > Docking the identified epitopes with B-cell antigen.
- Analyzing the three dimensional structure of the epitope and producing a novel drug, that can help in the eradication of the disease.

CHAPTER 5

REFERENCES

References:

- 1. https://www.healthline.com/health/hepatitis
- 2. Ryan M.; Bhutta, Zulfiqar A.; Brown, Alexandria; Carter, Austin; Casey, Daniel C.; Charlson, Fiona J.; Chen, Alan Z.; Coggeshall, Megan; Cornaby, Leslie; Dandona, Lalit; Dicker, Daniel J.; Dilegge, Tina; Erskine, Holly E.; Ferrari, Alize J.; Fitzmaurice, Christina; Fleming, Tom; Forouzanfar, Mohammad H.; Fullman, Nancy; Gething, Peter W.; Goldberg, Ellen M.; Graetz, Nicholas; Haagsma, Juanita A.; Hay, Simon I.; Johnson, Catherine O.; Kassebaum, Nicholas J.; Kawashima, Toana; et al. (October 2016). "Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries,

1990–2015: a systematic analysis for the Global Burden of Disease Study 2015". The Lancet. 388 (10053): 1545–1602

- **3.** "Statistics & Surveillance Division of Viral Hepatitis CDC". CDC. Archived from the original on 11 November 2016. Retrieved 10 November 2016.
- **4.** Rutherford, A; Dienstag, JL (2016). "Chapter 40: Viral Hepatitis". In Greenberger, NJ; Blumberg, RS; Burakoff, R (eds.). CURRENT Diagnosis & Treatment: Gastroenterology, Hepatology, & Endoscopy, 3e. New York, NY: McGraw-Hill.
- **5.** Fontana, Robert; Hayashi, Paul (2014-05-01). "Clinical Features, Diagnosis, and Natural History of Drug-Induced Liver Injury". Seminars in Liver Disease.
- Lee, WM; Dienstag, JL (2015). "Chapter 361: Toxic and Drug-Induced Hepatitis". In Kasper, D; Fauci, A; Hauser, S; Longo, D; Jameson, J; Loscalzo, J (eds.). Harrison's Principles of Internal Medicine 19e. McGraw-Hill.
- 7. Lee, William M. (31 July 2003). "Drug-Induced Hepatotoxicity". New England Journal of Medicine.
- **8.** Krawitt, Edward-L (2008). "Clinical features and management of autoimmune hepatitis". World Journal of Gastroenterology.
- **9.** Allan, Richard; Thoirs, Kerry; Phillips, Maureen (2010-07- 28). "Accuracy of ultrasound to identify chronic liver disease". World Journal of Gastroenterology.
- Hepatitis A And Hepatitis B Vaccine (Intramuscular Route)". Mayo Clinic. Retrieved 25 January 2018.
- **11.** Zhang; et al. (March 5, 2015). "Long-Term Efficacy of aHepatitis E Vaccine".

- **12.** Rosen, Hugo R. (2011-06-23). "Clinical practice. Chronic hepatitis C infection". The New England Journal of Medicine.
- **13.** Ryu W (2017). Molecular Virology of Human Pathogenic Viruses. Academic Press. pp. 247–260.
- 14. Zuckerman AJ (1996). "Chapter 70: Hepatitis Viruses". In Baron S; et al. (eds.). Baron's Medical Microbiology (4th ed.). Univ of Texas Medical Branch.
- **15.** Kay A, Zoulim F (August 2007). "Hepatitis B virus genetic variability and evolution". Virus Research.
- **16.** Bouchard MJ, Schneider RJ (December 2004). "The enigmatic X gene of hepatitis B virus". Journal of Virology.
- 17. Ryan KJ, Ray CG, eds. (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill.
- **18.** "Hepatitis D | NIDDK". National Institute of Diabetes and Digestive and Kidney Diseases.
- **19.** Melief CJ, van Hall T, Arens R, Ossendorp F, van der Burg SH (September 2015). "Therapeutic cancer vaccines". The Journal of Clinical Investigation.
- **20.** Miller, E.; Beverley, P. C. L.; Salisbury, D. M. (2002-07-01). "Vaccine programmes and policies". British Medical Bulletin.
- **21.** Needham, Joseph. (2000). Science and Civilization in China: Volume 6, Biology and Biological Technology, Part 6, Medicine. Cambridge: Cambridge University Press
- 22. Chang MH, Chen CJ, Lai MS, Hsu HM, Wu TC, Kong MS, Liang DC, Shau WY, Chen DS (June 1997). "Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group". The New England Journal of Medicine.

Appendix - I

MATERIALS AND METHODS

Name of	URL	Description		
software				
DATA RETRIVAL				
The	https://www.ncbi.nlm.nih.go	The NCBI provides access to		
National	<u>v/</u>	biomedical and genomic		
Centre		information. Major databases		
For		include Genbank and PubMed.		
Biotechn		NCBI was directed by David		
ology		Lipman.		

Informati		
on(NCBI)		
EVOLUTION	ARY ANALYSIS	
Clustal Omega	https://www.ncbi.nlm.nih.go v/	Clustal is a series of widely used computer programs used in Bioinformatics for multiple sequence alignment. [<i>Chenna R</i> , <i>et.al (July 2003)</i>]
BoxShad e	https://embnet.vital- it.ch/software/BOX_form.ht_ml	BoxShade is a program for creating visually pleasing images of multiple alignments of protein or DNA sequences. [Kay Hofmann and Michael D. Baron]
Molecula r Evolution ary Genetics Analysis (MEGA)	https://www.megasoftware.net/	Molecular Evolutionary Genetics Analysis (MEGA) is computer software for conducting statistical analysis of molecular evolution and for constructing phylogenetic trees. [Kumar, S. M. Nei (1993)]
PREDICTION	 OF ANTIGENS AND SUBUNIT VAC	CINES
Vaxijen 2.0	: <u>http://www.ddg-</u> pharmfac.net/vaxijen/VaxiJ en/VaxiJen.html	VaxiJen is the first server for alignment- independent prediction of protective antigens. [Doytchinova IA, Flower DR (2007)]
PREDICTION	OF T-CELL EPITOPE	

 IJRARTH00009
 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org
 747

NetCTL 1.2	http://www.cbs.dtu.dk/servi ces/NetCTL/	NetCTLpredicts Cytotoxic T-
		lymphocyte epitopes in protein sequences. [Larsen
		MV, et.al]
The Immune Epitope Database (IEDB)	https://www.iedb.org/	This free resource offers easy searching of experimental data characterizing antibody and T cell epitopes studied in humans, non- human primates, and other animal species.
PREDICTION	OF B-CELL EPITOPE	<u> </u>
Antibody	http://tools.immuneepitope. org/bcell/	The following methods are provided for B-cell
epitope		epitope prediction:
predictio n		O Chou&Fasman beta-turn prediction
		O Emini surface accessibility prediction
		O Karplus &schulz flexibility prediction
		 Kolaskar&Tongaonkar antigenicity
		O Parkar hydrophilicity prediction
		O Bepipred linear epitope prediction

L

	http://www.cbs.dtu.dk/servi	This derver predicts the location of linear B cel
BepiPred 1.0	ces/BepiPred-1.0/	epitope using a combination of hidden Markov
		model and a propensity scale
		method (Larsen et al.,2006)
ALLERGENC	ITY PREDICTION	
Allertop V 2.0	http://www.ddg-	AllerTopis a server for in silico prediction o
	pharmfac.net/allertop/	allergens based on the main physicochemica
		properties of proteins. [Dimitrov I, et.al]
AllergenF	http://ddg-	It is a bioinformatics tool for
P v 1.0	pharmfac.net/AllergenFP/	allergenicity prediction.
3D MODELLI	NG OF AN EPITOPE	
PEPFOL D	http://bioserv.rpbs.univ- paris-	PEP-FOLD, an online service, aimed at de novo
	diderot.fr/services/PEP-	modelling of 3D conformations for peptide
	FOLD/	between 9 and 25 amino acids in aqueous solution
		[Maupetit J,
		et.al]
PHYRE 2	http://www.sbg.bio.ic.ac.uk/	Phyre and Phyre2 (Protein Hom ology/Analog)
		Recognition Engi ne; pronounced as 'fire') are fre
	<u>~phyre2/html/page.cgi?id=in dex</u>	web-based services for protein structur
		prediction. Phyre2 has
		been designed to ensure a user-
		been designed to ensure a user-
		been designed to ensure a user-

	friendly interface for users inexpert in protein
	structure predictionmethods. Its
	development is funded by the Biotechnology
	and Biological Sciences Research Council.
	[Lawrence Kelley; Benjamin
	Jefferys (2011)].